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a b s t r a c t 

Spinel-type cathode LiNi 0.5 Mn 1.5 O 4 (LNMO) has intrigued the transportation industry due to its high operating voltage and total elimination of the expensive cobalt 

element. However, LNMO cathode with high mass loading ( > 3 mAh/cm 

2 in areal capacity) has suffered from excessive capacity degradation upon long cycling. 

Here, a robust Al 2 O 3 surface layer is introduced to the thick LNMO electrode via atomic layer deposition (ALD). The capacity retention in full cells with the graphite 

anode is improved from 46.3% to 75.3% after 300 cycles with cutoff voltage up to 4.85 V, while enabling average Coulombic efficiency of 99.9% during the cycling. 

The post-mortem analyses reveal that the Al 2 O 3 surface layer would convert to Al-O-F /Al-F species upon cycling, offering stable interphase to protect the cathode 

material. These results demonstrate the significance of surface modification enabling high voltage cathode for next-generation LIBs. 

 

a  

i  

o  

f  

c  

l  

s  

t  

t  

u  

p  

C  

i  

i  

l  

e  

t

 

f  

t  

V  

n  

i  

c  

p  

t  

e  

t  

m

s  

v  

p  

t  

l  

a  

t

 

m  

i

1  

h  

t  

e  

t  

b  

[  

m  

t  

s  

o  

p  

c  

c  

h

R

A

2

With the demand for next-generation high-end electronic devices

nd the popularity of electric vehicles increasing, innovative lithium-

on battery (LIB) technology has run into bottleneck issues [1] . Cath-

de material plays a key role when considering all components in LIBs

or more than 40% in both cost and weight ratios [ 2 , 3 ]. The current

ommercialization and research for cathode materials mainly focus on

ithium metal oxides (LiNi x Co y Mn z O 2 , x + y + z = 1, NCM) with a layered

tructure, lithium iron phosphate (LiFePO 4 , LFP) with an olivine struc-

ure, and lithium manganese oxides (LiMn 2 O 4 , LMO) with spinel struc-

ure. Layered lithium metal oxides have high energy densities, but the

se of expensive and toxic cobalt elements greatly restricts their ap-

lication in the widespread commercialization of electric vehicles [4] .

athode materials without Co element, such as LFP and LMO, offer lim-

ted energy density, lower than 500 Wh/kg at the material level, which

s insufficient for next-generation electric vehicles [5] . Co-free Li-rich

ayered oxide has also attracted extensive attention due to its high en-

rgy density, while the inferior reversibility at the material level due to

he oxygen loss is yet to be fully understood [6] . 

In this context, a spinel-type oxide LiNi 0.5 Mn 1.5 O 4 (LNMO) obtained

rom LMO using proper nickel substitution has attracted extensive atten-

ion since the average working voltage can be increased from 4 V to 4.7

 [7] . The energy density for this type of spinel material can thus be sig-

ificantly improved to 620 Wh/kg at the cathode material level, which

s close to the classical layered oxide like NCM111. Crucially, it does not

ontain expensive cobalt, making LNMO cost-effective and suitable for

ower batteries and large-scale energy storage applications. However,

he main obstacle to commercialization is in the stability of the cathode
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lectrolyte interphase (CEI) [ 8 , 9 ]. The currently commercialized elec-

rolyte is still dependent on the early development of the organic system,

ainly based on various carbonic ester solvent combinations with LiPF 6 
olute. The upper stable operating voltage is generally limited to 4.5 V

s. Li + /Li [10] . When the voltage increases, such electrolytes decom-

ose and fail to form an effective passivating layer, which deteriorates

he battery cycling stability [11] . Consequently, a high areal cathode

oading for this type of spinel cathode currently triggers excessive par-

sitic reactions; there has yet to be a design to achieve performance

argets [ 7 , 12 ]. 

Engineering modifications for both cathode and electrolyte enhance-

ents have been investigated considerably for LNMO material, includ-

ng heteroatom doping, [ 13 , 14 ] novel electrolyte/additive design, [15–

7] and surface coating [ 18 , 19 ] to improve interphase stability at

igh voltage conditions. Surface modification has been proven effec-

ive among all methods, and a well-designed artificial surface layer is

lectronically insulating to mitigate parasitic reactions between the elec-

rode and electrolyte. Different surface modification materials have also

een applied, such as conductive carbon, [20] oxides, [21] fluorides,

22] and phosphates [23] . Atomic layer deposition (ALD) is one of the

ost effective surface modification methods to achieve the uniform ar-

ificial layer. In each ALD cycle, the precursor molecule reacts with the

ubstrate surface in a self-limiting way, ensuring monolayer adsorption

n the target surface [24] . The ALD cycle can then be performed multi-

le times to control the surface layer thickness. The ALD surface modifi-

ation strategy has been widely applied to various battery materials, in-

luding LiCoO 2 (LCO), [ 25 , 26 ] LMO, [ 27 , 28 ] NCM, [ 29 , 30 ] and Li-rich
ng) . 
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Table 1 

Literature summary of ALD modified LNMO for LIBs. 

Year Surface chemistry ALD substrate Electrode areal 

loading 

(mg/cm 

2 ) 

Cell type Full cell cycling No. Ending capacity 

of full 

cell(mAh/g) 

Ref. 

2013 Al 2 O 3 Electrode / Half cell / / [34] 

2014 Al 2 O 3 Electrode / Half cell / / [35] 

2015 MgF 2 Powder 6.5–8 Half cell / / [36] 

2015 TiO 2 / Al 2 O 3 Electrode < 1 Half cell / / [37] 

2015 FePO 4 Powder / Half cell / / [38] 

2017 Al 2 O 3 Electrode / Half cell / / [39] 

2017 TiO 2 Powder / Half cell / / [40] 

2019 FeO x Powder 25 Half cell / / [41] 

2020 LiF Powder 8-13 Half cell / / [42] 

2013 Al 2 O 3 Electrode / Full cell with graphite 100 ∼40 [43] 

2014 LiAlO 2 Powder 9-10 Full cell with graphite 45 ∼90 [44] 

2015 Al 2 O 3 Powder 5.5 Full cell with Li 4 Ti 5 O 12 200 ∼110 [45] 

2018 AlF 3 Powder 20 Full cell with graphite 180 ∼90 [46] 

2021 FeO x Powder 3.5 Full cell with Li 4 Ti 5 O 12 200 ∼105 [47] 

This work Al 2 O 3 Electrode 22 Full cell with graphite 300 ∼80 
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ayered oxide (LRLO) [ 31 , 32 ]. It is widely demonstrated that the artifi-

ial surface layer can significantly improve cell cycling stability due to

he superior interphase resistibility towards electrolyte corrosion. 

It is worth noting that the ALD process can be applied on either the

ctive material powders or directly on the electrode [33] . For battery

pplications, a direct ALD process on the electrode is preferred since the

lectronic pathway (surface contact between the active material and the

onductive additive) will not be deteriorated. Another advantage of the

irect ALD process on the electrode is related to inactive components

rotection. Both conductive agent and binder are critical to achieving

table high voltage cycling, which is yet to be further investigated. With

he rising demand for high energy density batteries, thick electrode with

arge areal mass loading needs to be implemented. In principle, the ALD

recursors are gaseous, and their penetration through the entire thick

lectrode should be feasible. However, the feasibility of direct ALD mod-

fication on thick electrodes ( > 20 mg/cm 

2 areal mass loading) has not

een investigated, especially in the full cell setup. A literature summary

or ALD surface modification on different cathode materials is shown

n Table 1 . The cell performances were evaluated in half cells with low

real mass loading. Two key questions need to be tackled for the ALD

odification on the thick electrode: (1) Is the artificial surface layer

niform along the electrode thickness direction? (2) Is there any mor-

hological or chemical change of the artificial surface layer after long-

erm electrochemical cycling, especially under the high voltage cycling

onditions? 

In this work, we demonstrate that the ALD surface modification strat-

gy is feasible for a thick LNMO electrode (active material areal mass

 22 mg/cm 

2 ). Aluminum oxide (Al 2 O 3 ) was selected as the artificial

urface material in this study due to its chemical stability under high

oltage operation. The uniformity and the existence of the artificial sur-

ace layer after long-term cycling are revealed based on analytical elec-

ron microscopy. The ALD surface-modified LNMO cathode exhibits im-

roved cycling performance in the full cell using graphite as the anode. It

s found that the Al 2 O 3 surface layer will be fluorinated after long-term

ycling. The formed Al-O-F species resist acidic electrolyte corrosion,

nd the transition metal (TM) dissolution and redeposition are there-

ore mitigated. These results explicitly demonstrate the significance of

EI stability for high voltage operation. 

The ALD process was directly applied on the LNMO thick electrode

 ∼3 mAh/cm 

2 in capacity loading, ∼90 𝜇m in thickness), and the de-

igned thickness of the Al 2 O 3 surface layer was 3 nm (30 ALD cycles).

o verify the Al 2 O 3 surface layer uniformity, lamellas from both the

op and bottom locations of the ALD modified electrode were prepared

y the FIB lift-out process, as shown in Fig. 1 (a) and (b). The prepared

amellas were then thinned down to ∼100 nm thick for STEM-EDS char-

cterizations, and the morphology of the lamella is shown in Figure S1.
78 
s shown in Fig. 1 (c) and (d), a uniform surface layer containing Al

ignal was observed on the particle from both the top and bottom lo-

ations. The artificial surface layers of the lamella from both the top

nd the bottom locations of the thick electrode are ∼3 nm in thickness,

hich indicates that the LNMO particles through the whole electrode

ere uniformly coated during the ALD process. One more lamella sam-

le is shown in Figure S2 for the uniformity verification. The extra Mn

nd Ni signal at the outer layer was from the redeposition because of the

earby LNMO removal during the thinning process. Large area SEM-EDS

apping with the extracted spectrum also shows the uniform Al signal

n the surface of LNMO particles in Figure S3. The crystal structure of

NMO particles after the ALD process was also investigated via atomic-

esolution STEM imaging, as shown in Figure S4. The rhomboid shape

f the white spots implies the well-crystallized spinel structure of LNMO

aterial viewed along the [110] zone axis. These results indicate that

he ALD process has little impact on the crystalline structure of LNMO

aterial. 

The electrode’s conductive agent and binder are also crucial to the

ycle stability as discussed in our previous publication [5] . Herein, the

arbon (SPC65) and PVDF (HSV900) from the ALD modified electrode

ere also checked via STEM-EDS, and the results are shown in Figure

5. Al signal can be found on both conductive agent and PVDF. The

eactivity of these two inactive components towards a high-voltage en-

ironment likely decreases after ALD coating, which may contribute to

ess parasitic reactions and better cycling. 

The unmodified and ALD-modified LNMO cathode were paired with

raphite anode and assembled into full cells for the long-term cycling

est. The results are shown in Fig. 2 . The assembled coin cells were

rst cycled at C/10 twice as the formation cycles and then switched

o C/3 in subsequent cycles. The discharge capacity and corresponding

oulombic efficiency are shown in Fig. 2 (a). The unmodified LNMO or

LD modified LNMO electrode demonstrate more than 550 Wh/kg as

he energy density at the material level from full cell, indicating that

he ALD process on the cathode does not influence the utilization of

ctive material. For the ALD modified LNMO electrode, the cycling re-

ention reaches 75.3% after 300 cycles, while the unmodified sample

nly exhibits 46.3%. The unmodified LNMO full cell suffers from low

oulombic efficiency, and the value hardly exceeds 99.7%. Meanwhile,

he ALD modified LNMO enables high Coulombic efficiency during the

hole testing period. The value increases to 99.8% within 30 cycles and

hen reaches 99.9% after 100 cycles. Noted that the CEs from the full

ell using ALD modified cathode still take more than 100 cycles to reach

9.9%, indicating the complexity of the high voltage system. Other com-

onents inside the cell are yet to be optimized. The unmodified and ALD

odified LNMO cathodes were also evaluated in full cells at high tem-

erature (55°C), as shown in Figure S6. The modified LNMO full cell de-
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Fig. 1. Cross section images of (a) top and (b) bottom locations from a 3 mAh/cm 

2 ALD modified LNMO electrode for FIB lift-out process; the STEM images with 

the corresponding EDS mappings from (c) the top and (d) bottom position. 
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ivers better cycling stability than the unmodified one, which is consis-

ent with the room temperature testing results. Considering the baseline

lectrolyte (Gen2) was adopted here, further optimization should focus

ore on electrolyte design. The average charge and discharge voltage

re shown in Fig. 2 (b). The unmodified LNMO in the full cell shows a

rowing overpotential along with the cycles. The overpotential of ALD

odified LNMO in the full cell is stable even after 300 cycles. The se-

ected charge-discharge profiles and the corresponding dQ/dV plots are

hown in Figure S7 and Fig. 2 (c) and (d). The oxidative peaks from the

nmodified LNMO cell shift towards the higher voltage value, with a

lear increasing trend in both peaks around 4.5 V (Ni 2 + /Ni 3 + redox) and

.7 V (Ni 3 + /Ni 4 + redox). At the same time, the reductive peaks move

owards the lower voltage side. The oxidative and reductive peak posi-

ions from the ALD modified LNMO full cell are well maintained. These

esults indicate the dramatic impedance rising and severe Li inventory

oss in the full cell with the unmodified LNMO cathode. EIS measure-

ents were further conducted to verify the cell level impedance change

long with cycling, and the results are shown in Fig. 2 (e) and (f). Though

he initial impedance of the unmodified LNMO cell was slightly lower

han the ALD modified cell, the value grew significantly as the cycle

umbers increased. As for the ALD modified LNMO cell, the negligible

mpedance change within 200 cycles confirms the cell stability. Detailed

quivalent circuit model and related fitted data are shown in Figure S8

nd Table S1-S2. 

To pinpoint the mechanism for performance improvement through

LD modification, post-mortem analysis was conducted on the LNMO
79 
athode and graphite anode after 300 cycles. The cycled electrode was

ollected from the disassembled full cell. Two lamellas from the top

nd bottom parts of the cycled LNMO electrode were lifted out through

he FIB process for STEM-EDS characterizations. The results are shown

n Fig. 3 (a) and (b). The surface modification layer with the Al signal

an be well-identified at both locations based on the EDS mapping, and

he thickness remains ∼3 nm. Note that the modification layer becomes

ess conformal after long-term cycling compared to the pristine state.

dditionally, we observe that both Mn and Ni distributions are inho-

ogeneous from the sub-surface region to the bulk area of the LNMO

article, indicating the dissolution of the transition metal ions. The inho-

ogeneous distribution is more evident for the top lamella, suggesting

he top part of the thick electrodes suffers more from the electrolyte

orrosion. This trend is not surprising considering the excess amount

f electrolyte was injected from the top surface of the thick electrode

uring cell assembly. The surface phase changes from both the top and

ottom lamellas were checked via atomic-resolution STEM, as shown in

igure S9. The results suggest that the region for phase change is within

 nm from the surface for both top and bottom lamellas, while the top

as a slightly larger phase change region than the bottom. Considering

he size of the primary particles, the phase change is negligible in the

resence of modification layer. 

XPS was performed on both unmodified and ALD modified LNMO

efore and after cycling to decipher the chemical bonding information

f CEI. A mild etching process was also applied on the cycled samples

or depth profiling information. The corresponding results are shown in
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Fig. 2. Electrochemical performance comparison between the unmodified LNMO and ALD modified LNMO thick electrodes: (a) cycling performance with Coulombic 

efficiencies, (b) corresponding average charge and discharge voltages; the dQ/dV plots of (c) unmodified LNMO and (d) ALD modified LNMO cycled in the full cell; 

the Nyquist plots of (e) unmodified LNMO and (f) ALD modified LNMO full cells. 
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ig. 4 for C 1s, O 1s, and Al 2p spectra, and the F 1s and P 2p spectra are

hown in Figure S10. Before cycling, the unmodified LNMO electrode

hows C-C bonding at 284.6 eV from the carbon-based conductive agent

nd the adventitious C-C/C-H bonding from surface oxides absorption.

eaks from 285 eV to 289 eV can be assigned to different carbon-oxide

onding types, usually attributed to the functional group at the edge of

he conductive agent and the PVDF binder [ 48 , 49 ]. O 1s spectra also

how evident C-O/C = O bonding and a prominent lattice oxygen peak at

30 eV. C-F peak appears in F 1s due to the PVDF presence, while no P

p peak can be identified. 

As shown in Fig. 4 (b), the ALD modified LNMO electrode shows sim-

lar C 1s spectra as the unmodified sample with lower intensity at C-

/C = O and C-F peaks. The O 1s peak shows apparent differences be-

ween these two samples. The ALD modified LNMO shows a prominent

eak at 530.9 eV, corresponding to the Al-O bonding. A prominent Al 2p

eak at 74.0 eV and the symmetrical peak shape indicate only one kind
80 
f Al bonding presence. This evidence, combined with the STEM-EDS re-

ults shown in the previous section, confirms a uniform Al 2 O 3 artificial

ayer on the surface of the LNMO electrode after the ALD process. Af-

er electrochemical cycling, the XPS spectra from unmodified LNMO in

ig. 4 (a) show a minimal change from the C 1s spectra. In comparison,

he lattice oxygen peak could still be detected from O 1s spectra and be-

ame even more apparent after the mild etching process. This indicates

he CEI is not well-formed to fully cover the LNMO surface. As for the

LD modified LNMO electrode, the C 1s spectra changes drastically. The

istinct rising of the C-O peak shows the accumulated organic species

ayer in the CEI. The O 1s peak is similar to the modified electrode be-

ore cycling, except for some shift towards the left side. This could be

ue to the mild corrosion between electrode and electrolyte, with LiPF 6 
alt decomposition products forming P-O-F species. The Al 2p peak of

he ALD LNMO sample shifts towards higher binding energy after cy-

ling because of the fluorination of Al-O, which results in Al-F/Al-O-F
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Fig. 3. The STEM images with the corresponding EDS mappings of the lamellas from the cycled LNMO electrode with ALD modification: (a) top and (b) bottom 

position. 

Fig. 4. XPS spectra of C 1s, O 1s and Al 2p from (a) unmodified LNMO and (b) ALD modified LNMO electrodes before and after cycling; (c) XPS spectra of Mn 2p 

and (d) ICP results from cycled graphite electrodes; (e) XPS spectra of Mn 2p and (f) ICP results from glass fiber separators after cycling. 
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onding ( ≥ 75.5 eV). The unmodified LNMO also shows a small bump

t the same binding energy, almost disappearing after the mild etching

rocess. This Al signal could be attributed to the Al current collector

orrosion. When the same etching process was applied on the cycled

LD LNMO, the Al 2p peak is still present with less intensity, implying

he robustness of the Al-F/Al-O-F layer in CEI. The F 1s and P 2p spectra

f the two cycled electrodes have subtle differences, indicating a similar

ecomposition pathway for LiPF 6 salt with or without the Al 2 O 3 artifi-

ial surface layer. In short, the electrolyte decomposition is unavoidable

onsidering the LNMO electrode was cycled with a high voltage range

p to 4.85 V. The CEI corrosion during the high voltage cycling could

e a severe problem, leading to the transition metal dissolution. The

rtificial CEI provided by the ALD process could effectively protect the

NMO, while the unmodified LNMO suffered direct exposure towards

he degraded electrolyte. 
81 
Considering that the Al-contained CEI is robust during long-term cy-

ling, corrosion between decomposed electrolyte and cathode should

e mitigated. SEM with EDS, XPS, and ICP characterizations were per-

ormed to track Mn and Ni dissolution/redeposition on the glass fiber

eparators and graphite electrodes. As shown in Figure S11, both the

athode and anode show similar morphology after the long-term cy-

ling. A negligible glass fiber residual can be identified on the cathode

ide, while the anodes offer clear glass fiber residue (morphology of

ristine glass fiber is shown in Figure S12). A similar amount of Mn

nd Ni was found on both graphite anodes based on the EDS quantifi-

ation (See details in Table S3). Further XPS characterizations on the

ycled samples show that the Mn 2p peaks from the SEI layer of both

raphite electrodes have similar intensity, as shown in Fig. 4 (c). The

epth profiling by Ar etching on both cycled graphite samples confirm

hat the Mn ions are a minor component of the SEI. ICP measurements
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Fig. 5. Schematics of performance improvement of LNMO electrode with artificial surface layer through ALD process. 
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ere then conducted on both graphite electrodes to quantify the total

n and Ni dissolved from the cathode and redeposited on the graphite.

s shown in Fig. 4 (d), an equal increment of Mn and Ni concentration

s detected for both graphite electrodes after long-term cycling. Besides

he graphite anode, electrolytes should also be considered from the cy-

led cells. Thus, the glass fiber separators paired with different cathode

amples were characterized using XPS, ICP, and SEM-EDS. The results

re shown in Fig. 4 (e-f) and Figure S13. The glass fiber from the unmod-

fied LNMO cell shows obvious peaks in XPS Mn 2p spectra compared

ith the ALD modified LNMO cell. ICP quantification results in Fig. 4 (f)

urther demonstrate that the unmodified LNMO has a severe Mn and Ni

issolution issue. Most of the dissolved transition metal ions are trapped

n the glass fiber separator, as shown in Figure S14(e). 

The above results suggest that the artificial surface layer drastically

educes the transition metal dissolution from the cathode. The elec-

rolyte of unmodified LNMO with graphite cells degraded quickly, re-

ulting in the increase of Mn/Ni concentration and the moisture level

rom the beginning cycle. Details are shown in Figure S14 and Figure

15 for the cycled electrodes and glassfiber separator collected from sin-

le layer pouch cells. The source of the moisture is well documented in

he literature that the common carbonate electrolyte solvents such as

thylene carbonate would be dehydrogenated, where the free protons

ould be released [ 50 , 51 ]. These protons would attack the cathode ma-

erials, which results in moisture generation. Then LiPF 6 salt would be

ydrolyzed to generate HF, thus further corroding the materials inside

he cells. The possible products from these parasitic reactions include

ifferent metal fluorides, such as LiF, MnF x , and NiF x . However, all

hese fluorides are soluble in the presence of HF; [52] thus, the cath-

de interphase would never be stabilized. The side products would also

log the lithium-ion diffusion pathway in between the cathode and an-

de, leading to the gradual growth of the cell level impedance. For the
82 
LD modified LNMO electrode, the artificial Al 2 O 3 interphase would be

orroded by HF at the beginning. The generated Al-F/Al-O-F would not

e corroded further due to its inertness towards HF and insolubility in

ater and HF solution [52] . And as a result, the converted artificial in-

erphase can be well remained on the cathode surface during long-term

ycling, thus providing constant protection of LNMO materials so that

oth Mn and Ni can hardly be detected either in the glass fiber separa-

or or the graphite anode. Therefore, the cathode active material LNMO

an be well preserved by the artificial interphase. The long-term cycling

f LNMO-graphite cells with high areal loading can be improved — the

erformance improvement mechanism through ALD modification is il-

ustrated in Fig. 5 . 

In conclusion, the feasibility of surface modification by the ALD pro-

ess on the LNMO thick electrode (up to 100 𝜇m) has been verified. The

amellas lifted out from the thick electrode’s top and bottom locations

ave been checked by STEM-EDS, and the Al signal is present at both

ocations. The conductive agent and the binder have also been carefully

hecked that the surfaces can be partially coated via the ALD process,

hich may mitigate the parasitic reaction. Further optimization of the

LD process may bring opportunities to modify even thicker electrodes

ith other functional compounds. The whole experimental verification

rocess provides an example for surface coating uniformity and stability

tudy. Only with thorough examination can the ALD coating method be

ith high-quality control for industrial-level applications. Similar ver-

fication procedure can be extended to thick electrodes using cathode

aterials such as layered NCM and LiCoO 2 . The cycling stability of

LD modified LNMO cathode with 3 mAh/cm 

2 areal capacity has been

reatly improved under the high voltage operating conditions, without

acrificing the specific capacity of cathode material. Though the Al 2 O 3 

s converted to Al-F/Al-O-F species with a less conformal surface cover-

ge after long-term cycling, the thickness of the artificial surface layer
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s well maintained. The existence of the robust surface layer reduces the

ctive materials’ corrosion from the degraded electrolyte, and the TM

issolution amount is thus mitigated. These findings demonstrate the

mportance of interphase protection for high voltage cathode materials

o achieve long-term cycling stability. 
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