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The sluggish progress of battery technologies has drastically hindered the rapid 

development of electric vehicles and next-generation portable electronics. Improving the energy 

density requires breakthroughs in materials for both cathode and anode, and new characterization 

methods to accurately correlate the materials with their performances. 



xxi 
 

For cathodes, lithium (Li) rich layered oxides exhibit high reversible specific capacities 

over 300 mAh g-1, attributing to the oxygen redox reaction. However, oxygen activity comes with 

instability in the form of oxygen loss, which is associated with irreversible voltage decay and 

capacity fading. Calculations suggest that incorporating 4d elements, such as Mo, enhances the 

structural stability by altering the local band structure and impeding oxygen vacancy formation. 

Driven by these findings, Mo is co-doped with Co into Li[Li0.2Ni0.2Mn0.6]O2, showing notably 

reduced voltage decay and capacity fading without sacrificing energy density and cycle life. 

The Li metal anode is critical to break the energy-density bottleneck of current Li-ion 

chemistry. Inactive Li formation is the immediate cause of capacity loss and catastrophic failure 

of Li metal batteries. However, its composition has not yet been quantitatively studied due to the 

lack of effective diagnosis tools that can accurately differentiate Li+ in solid electrolyte interphase 

(SEI) components and the electrically isolated unreacted metallic Li0, which together comprise the 

inactive Li. By establishing a new analytical method, Titration Gas Chromatography (TGC), we 

accurately quantify the contribution from unreacted metallic Li0 to the total amount of inactive Li. 

We identify the Li0, rather than the (electro)chemically formed Li+ in SEI, as the dominating cause 

for the inactive Li and capacity loss. Coupling the measurements of the unreacted metallic Li0 

global content to the observations of its local micro- and nano-structure by cryogenic electron 

microscopies, we also reveal the formation mechanism of inactive Li in different types of 

electrolytes, and determine the true underlying cause of low CE in Li metal deposition and 

stripping. We ultimately propose strategies for highly efficient Li deposition and stripping to 

enable Li metal anode for next generation high-energy batteries. 
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Chapter 1 Introduction: Next Generation High-Energy Lithium Metal 

Batteries 

 

1.1 500 Wh/kg Lithium Metal Batteries  

Rechargeable lithium ion batteries have markedly reshaped our lives – from electric 

vehicles to portable electronic and optoelectronic devices. Since the first introduction of 

rechargeable battery, lead-acid battery with an energy density of ~ 40 Wh/kg, in 1859, the 

rechargeable battery energy density only increases to ~ 300 Wh/kg by today’s most cutting-edge 

lithium ion technologies (NCA-graphite battery) in the past 160 years. Comparing with the rapid 

development of semiconductor industry, which follows the Moore’s law, batteries essentially have 

become the bottleneck of many electronic technologies that are required to be lighter, thinner and 

lasting longer. The ever-increasing demands on high energy urgently request the battery research 

and development to breakthrough current lithium ion chemistry and look for better alternatives. 

Winter et al [1] summarized the gravimetric energy densities of various battery chemistries, as 

shown in Figure 1.1. The current commercialized graphite anode materials almost reach its 

theoretical limits, but only deliver a cell level energy density of ~ 300 Wh/kg. Only lithium metal 

anodes could potentially give an energy density of more than 500 Wh/kg when coupling with high-

Ni NMC layered oxides or sulfur as cathode materials.[2] 
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Figure 1.1 The development of gravimetric energy densities for various battery chemistries.[1] 

 

Figure 1.2 shows the schematic illustration of the first commercial lithium ion battery, 

which employ LiCoO2 as cathode, graphite as anode and liquid organic carbonate electrolyte. The 

other necessary lithium ion battery components include separators, current collectors (Cu for anode 

and Al for cathode), cell cases and so on. During charging/discharging, lithium ions shuttle 

between the cathode and anode through the electrolyte inside the battery, while electrons traverse 

the external circuit where they do work. The overall energy density of a battery is determined by 

two factors, the specific capacity provided by the active electrode materials and the total weight of 

all cell components. Based on the definition, Wh/kg, the higher the specific capacity and the lower 

the total weight of a cell, the higher energy density a cell can deliver. So the design principles for 

a high-energy battery include exploration of cathode and anode materials with intrinsic high 

specific capacity, and optimization of cell configurations to reduce the weight of inert components, 

even including the amount of electrolyte. Liu et al [3] shows a detailed example of how to design 
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a commercially viable high energy cell by optimizing cell parameters (Figure 1.3). For the cathode, 

apart from the requirements on improving the specific capacity of cathode materials to 252 mAh 

g-1, thick electrode design is critical. A balance among the active mass loading, porosity, and 

thickness should maximum the areal specific capacity, minimize the amount of electrolyte needed 

and maintain a homogeneous electronic/ionic conductivity within the whole electrode. For lithium 

metal anode, the requirement lies in the N/P ratio, which is directly correlated to the lithium metal 

battery cycle life.  

 

 

Figure 1.2 Schematic diagram of the first commercial lithium ion battery that employs graphite as 

anode and LiCoO2 as cathode[4] 
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Figure 1.3 A calculation showing cell-level specific energy as a function of cell parameters. The 

baseline cell consists of NMC622 material with 196 mAh g−1 specific capacity (charge to 4.6 V), 

35% of cathode porosity, 22.0 mg cm−2 of active mass loading and 70 μm of cathode thickness. 

The N/P ratio is 2.6. The electrolyte to capacity ratio is 3.0 g Ah–1. The lightly shaded area in the 

baseline cell represents a specific energy much less than 50 Wh kg−1 based on the amount of the 

cathode, anode and electrolyte and other inactive materials reported in most literature studies for 

rechargeable coin cells.[3] 

 

In many of published studies of battery materials, it is common to see the testing results 

are based on low areal capacity (< 1 mAh cm-2), flooded electrolyte (100 µL in a coin cell), and 

infinite lithium source (> 500 µm lithium chips). Under these conditions, cells usually show very 

good cycling performances (Figure 1.4a). However, this is not a proper reflection of the scenarios 

in real-world batteries. There is a huge gap between these conditions in research and in reality, as 
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summarized in Figure 1.4b. It is essential to evaluate battery optimizations under realistic 

conditions so that the R&D advances can be rapidly deployed into commercial applications.[5] 

 

 

Figure 1.4 Estimated cell energy as a function of the N/P and E/C ratios, assuming that other cell 

parameters are same. The energy density was calculated at a single-cell level, and the mass includes 

the cathode, Al foil, electrolyte, separator and anode used in the cell, and an estimated package foil 

mass instead of the coin cell case. The low-area capacity cathode and thick Li metal anode gave a 

high N/P ratio, and the flooded electrolyte led to a high E/C ratio. Such high masses combined 

with a low-loading cathode reduce the specific energy of the battery. For example, for the 

Li||NMC622 cell in a, tested under conventional conditions, the N/P ratio was as high as 32.38, 

and the E/C ratio reached 61 g Ah−1 owing to the flooded electrolyte (100 μl); therefore, the 

presented energy density is only 46 Wh kg−1 , which is far below that expected from the high 

energy density of such a cell. To achieve a high cell-level energy under realistic conditions, the 

cell parameters must be constrained with the N/P ratio no more than 2 and the E/C ratio less than 

3 g Ah−1 In addition, owing to the lightweight Li, the estimated energy densities of LMBs are 

relatively higher than those of Li ion batteries using a graphite anode.[5] 
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1.2 Layered Oxides Cathode Materials 

In conventional lithium ion batteries, when graphite is adopted as the anode, as the 

capacity-determining component, cathode materials have been extensively studied to explore new 

compounds for longer cycle life and higher energy density. For commercially available LiCoO2, 

only half of the lithium could be utilized in order to avoiding a major phase transition which leads 

to layer structure collapse, limiting the effective specific capacity of LiCoO2 around 140 mAh g-1. 

By partially substituting the Co with Ni and Mn/Al, forming LiNixMnyCo1-x-yO2 (NMC)/ 

LiNi0.85Co0.1Al0.05O2 (NCA), the capacities could be significantly booted to ~ 200 mAh g-1. Further 

exploring the lithium replacement in layered oxides, Li-rich layered oxides (LRLO), xLi2MnO3·(1 

− x)LiMO2 (M = Ni, Mn, and Co), was found by further introducing excess lithium to transition 

metal layers. Apart from the capacity contributed by transition metal redox, anion redox is enabled 

in this unique structure, leading to their high reversible discharge capacity over 300 mAh g-1. The 

discharge voltage profiles and capacity comparison of different types of layered oxides are shown 

in Figure 1.5. The ultra-high specific capacity makes LRLO very attractive for next-generation 

high-energy batteries, however, its poor kinetics and large voltage decay upon cycling impede its 

implementation in practical batteries. 
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Figure 1.5 Discharge voltage profiles of different layered oxides cathode materials. [6] 
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1.3 Lithium Metal Anode 

For a battery anode, lithium (Li) metal is considered the “Holy Grail” because of its 

extremely low density (0.534 g cm-3), ultra-high theoretical capacity (3860 mAh g-1), and 

exceptionally negative electrochemical potential (-3.04 V vs. standard hydrogen electrode) [7]. 

The Li metal anode was first adopted in the TiS2-Li prototype in 1976 [8,9], but was soon 

replaced by intercalation compounds like graphite (C) because of severe capacity fading and 

potential explosion hazards resulting from dendritic Li growth [10]. Since C/LiCoO2-based Li-

ion batteries delivered an energy density of 120-150 Wh/kg, twice that of the state-of-the-art 

Ni-Cd batteries at the time [9], Li-ion batteries rapidly supplanted Ni-Cd in the battery market, 

becoming the prevalent technology. Since then, Li-ion chemistry research has thrived, with 

significant effort expended towards further increasing energy and power density. Meanwhile, 

the use of Li metal as the anode material has also gradually resuscitated after the 20 years of 

dormancy since its initial introduction. Around 2010, prospering electric vehicle and consumer 

electronic markets urgently demanded development of high-energy-density storage devices, 

triggering explosive research on Li metal batteries to achieve an energy density of 500 Wh/kg 

or higher in the form of high-Ni NMC-Li or S-Li batteries [1]. Figure 1.6 summarizes the 

number of the published papers with a keyword of “lithium metal battery” over the past ~40 

years, clearly demonstrating the intense interest in Li metal batteries.  

Current Li-metal-battery research is primarily focused on strategies to alleviate Li 

dendrite formation, improve the Coulombic efficiency (CE), and better understand 

plating/stripping through advanced characterization methods and theoretical modeling. These 

efforts have been systematically summarized in the recent reviews [11–16]. Among these 
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achievements, it is important to highlight that dense Li deposition with a CE of approximately 

99% is currently readily obtainable by employing electrolytes of high salt concentration [17–

21] or localized high-concentration electrolytes [22,23]. Another key achievement of note is 

the use of cryogenic electron microscopy (Cryo-EM) to visualize the nanostructure of the 

electrochemically deposited Li metal (EDLi) and mysterious solid electrolyte interphase (SEI) 

[24–26], affording a powerful tool to correlate nanostructure with performance and 

optimization strategies. Regardless of these achievements, thorough understanding of Li metal 

failure still remains challenging, due to the difficulties in Li metal characterization. 

 

 

Figure 1.6 The number of papers on Li metal batteries published each year since the first 

introduction in 1976. A total number of 17376 of papers have been published. Statistics from Web 

of Science by searching key words Li Metal Battery, as of Dec. 1, 2018. 
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1.4 Recent advances in lithium metal characterization 

1.4.1 Introduction 

A variety of characterization tools have been developed to understand lithium metal growth 

and degradation mechanisms, which is of critical importance to achieve enhanced safety and 

battery performances. However, it has been challenging for lithium metal characterization, due to 

two reasons, 1. High reactivity of lithium metal, leading to difficulties in beam damage issues and 

sample protection; 2. Low atomic number of lithium, making many well developed 

characterization techniques based on X-ray and electrons fail on lithium metal. Despite the 

difficulties, efforts on lithium characterization are still being made to broad our understanding. 

These efforts will be discussed below from three perspectives, morphology, SEI chemical 

composition and quantitative analysis.  

 

1.4.2 Morphology 

Lithium dendrite growth is believed to be the biggest issue of lithium metal safety. A wide 

range of imaging tools from variety of length and time scales have been developed to understand 

the dendrite nucleation and growth. Figure 1.7 summarizes the imaging techniques that have been 

utilized to study lithium dendrite growth and their spatial resolution limits. Table 1.1 compares the 

pros and cons of these tools.  
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Figure 1.7 A summary of imaging tools used for lithium metal study and their detection ranges. 

 

Table 1. 1 The pros and cons of a variety of imaging tools for lithium metal study 
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Wood et al[12,27] developed operando video microscopy (Figure 1.8a) to observe the 

dynamic behavior of lithium dendrite during plating and stripping, and correlated the morphology 

change to the voltage profile response. As shown in Figure 1.8b, they identified three processes 

during stripping. First, the as-formed mossy dendrite dissolves into electrolyte. This is a kinetically 

fast reaction so that the cell polarization during this process is minimum. Dendrites exist on both 

electrodes. Second, “dead” lithium forms. The cell polarization becomes maximum in this step. 

There is a transition from electro-dissolution of dendrites to bulk lithium dissolution. Last, pitting 

occurs on bulk, which leads to decreased cell polarization. This step is a kinetically slow bulk 

dissolution of lithium. Chen and Wood et al[28] later also used the same set-up to investigate the 

voltage profile response to mass transport effect (Figure 1.8c). They observed two types of 

behavior from lithium plating curves, peaking and arcing. They found the peaking behavior is 

limited by reaction kinetics in initial cycles, while the arcing voltage is limited by mass transport 

within the accumulated dead lithium layers. Overall, the operando video microscopy offers a 

powerful platform to analyze lithium dendrites. But its spatial resolution is limited to micro level.  
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Figure 1.8 (a). schematic of synchronized electrochemical-video microscopy setup[27]; (b), video 

observation and schematic illustration showing the correlation between lithium morphology and 

electrochemical responses in lithium-lithium symmetric cell[12]; (c) the correlation between 

voltage profiles and mass transport effect[28]. 

 



14 
 

Bai et al[29] also employed the operando optical microscopy to visualize lithium growth 

at micron level. They revealed the relationship among morphology, current, capacity and voltage 

responses in convention carbonate electrolyte. When the concentration of lithium ions at the 

electrode/electrolyte interface reaches zero, the moment is defined as “Sand’s time”; The capacity 

at Sand’s time is defined as “Sand’s capacity”. They found that dendritic lithium starts to grow 

beyond Sand’s time and the dendritic growth leads to voltage spike, as shown in Figure 1.9. Before 

Sand’s capacity, the lithium growth is limited by reaction and follows root-growing process. After 

Sand’s capacity, the lithium growth turns to dendritic tip-growing, which is limited by transport. 

These findings indicate that increasing salt concentration in electrolyte could maximum Sand’s 

capacity thus reducing the lithium dendrite formation.  

 

 

Figure 1.9 (a), voltage responses of capillary cells at various deposition current densities; (b), 

representative optical images of lithium deposits demonstrating the clear change of morphologies 

at Sand’s time for various current densities.[29] 

 

Scanning electron microscopy (SEM) is the most commonly used technique for ex situ 

morphology observation. It possesses higher resolution than optical microscope. However, it is 

challenging to design an in situ cell for SEM, where vacuum system is needed, thus limiting the 

actual achieved resolution. As a result, in situ SEM is not as widely adopted as operando optical 
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microscopy. In spite of the challenges, Dolle et al[30] designed a polymer electrolyte based in situ 

cell (Figure 1.10a). The in situ SEM recorded every 20 minutes to reduce the beam damage on 

polymer electrolyte. They observed a root growth mechanism of lithium dendrite, as shown in 

Figure 1.10b. 

 

 

Figure 1.10 (a), configuration of the in situ SEM cell; (b) observation of lithium deposition at the 

Cu-polymer inferface at 0, 160 and 200 min, the current density is 0.5 mA cm-2.[30] 

 

Atomic force microscopy (AFM) enables 3D morphological image with a lateral resolution 

of ~ 30 nm and vertical resolution of 0.1 nm. Cohen et al [31] used AFM to observe a lithium 

surface film, where a bumper appears after lithium deposition (Figure 1.11a) and shrink after 

consecutive lithium dissolution (Figure 1.11b). Based on the observation, they proposed the failure 

mechanism of lithium is the beginning of dendrite formation and non-uniform lithium dissolution 

are accompanied by breakdown and reparation of surface films, as illustrated in Figure 1.11c. 
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Figure 1.11 (a) AFM image showing lithium deposition; (b) AFM image showing lithium 

stripping; (c) schematic illustration of lithium metal failure mechanism based on AFM 

observation.[31] 

 

Transmission electron microscopy is a powerful to study both morphology and chemical 

information of lithium at nanoscale. In 2011, Ghassemi et al [32] firstly adopted an open cell 

configuration using ionic liquid electrolyte to enable in situ observation of lithium fiber growth on 

Si nanorods. After this, liquid cell was employed for in situ study of dendrite growth and SEI 

information in conventional electrolytes[33–35]. Due to extreme sensitivity of lithium to electron 
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beams, these in situ TEM studies at room temperature only enables a micron-scale resolution. In 

2017, borrowing the wisdom from structural biology, cryogenic TEM [24] was firstly introduced 

to battery field and enabled the atomic resolution of lithium metal for the first time. The 

cells/holders used in TEM play the key role. Figure 1.12 shows three types of cells/holders that 

have been used in lithium metal study. Figure 1.12a is an open cell, which could enable an 

operando observation. However, this type of cell requires the electrolyte to be vacuum compatible 

and thus lack of the solid-liquid interphase study in real battery scenario. Liquid cell 

(environmental TEM), as shown in Figure 1.12b, allows solid-liquid interphase study using liquid 

electrolyte, making the observation close to real cell conditions. But the beam effect on dynamic 

processes is inevitable. The resolution is also limited by the presence of liquid. Cryo-holder allows 

the TEM operation under cryogenic temperature, which eliminate the beam damage on fragile 

lithium metal and SEI, thus enables an atomic resolution. But so far, the cryo-TEM can only 

operate ex situ. Despite of the limitations, TEM is still the most powerful tool to study the lithium 

nucleation and growth.  
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Figure 1.12 TEM cell/holders for lithium metal. (a) in situ open cell[36]. (b) in situ liquid cell[34]. 

(c) cryogenic holder[24]. 

 

Kushima et al [37] used a liquid cell design, as shown in Figure 1.13a, to in situ observe 

the lithium nucleation and growth in early stage. This cell design employed LiCoO2 as the lithium 
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source and 1M LiTFSI in di-methoxy sulfoxide as electrolyte, which is the one that is most close 

to real cell conditions in literature. Based on the real-time TEM video analysis as shown in Figure 

1.13c, they identified the root growth mechanism. They also found that different overpotentials 

lead to surface growth or whisker growth, as illustrated in Figure 1.13b. Overall, they claimed 4 

stages of growth: 1. Nucleation; 2. Whisker growth from root; 3. Growth rate decreases due to SEI 

accumulation; 4. A kink formed on the whisker, separating it into two segments.  

 

 

Figure 1.13 (a) schematic of cross-section of the liquid cell near the silicon nitride membrane 

windows; (b) schematic illustration explaining root growth mechanism of lithium whiskers; (c) 

real-time observation of lithium whisker growth and dissolution by in situ TEM.[37]   

 

Synchrotron hard X-ray microtomography with an energy of 22 – 25 KeV is used to image 

the lithium dendrite formation. Imaging is achieved by voxel brightness contrast with a spatial 

resolution of microns. Harry et al [38] used a symmetric lithium-polymer-lithium cell to image the 

structure residing on either side. As shown in Figure 1.14, they found that dendrites initiate from 

subsurface structure underneath the polymer/ lithium interface. The volume occupied by the 
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subsurface structure is significantly larger than that occupied by the dendritic structure protruding 

out from the electrode surface.  

 

 

Figure 1.14 Evolution of lithium dendrite growth by X-ray tomography 3D reconstruction, in a 

symmetric lithium cell.[38] 

 

Eastwood et al [39] used synchrotron phase contrast X-ray imaging (19 keV) to study the 

lithium deposition behavior. The cell design is shown in Figure 1.15a. the components are 

distinguished by contrast differences of lithium (lower x-ray attenuation), electrolyte (intermediate 

attenuation) and lithium salt (higher attenuation). Greater X-ray attenuation relates to an increased 

electron density due to the incorporation of higher atomic number elements in the structure. Figure 

1.15b shows the 2D slice through reconstructed microstructure after plating. The dark parts 

represent mossy/bulk lithium, while the light grey indicates the electrolyte. Figure 1.15c shows the 

reconstructed morphology after stripping, indicating the “dead” lithium residue. Conceptively, this 

method potentially could be used to quantify the “dead” lithium by differences in X-ray attenuation; 

lithium metal has the least X-ray attenuation and SEI components exhibits increased X-ray 
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attenuation. However, this is limited by the spatial resolution, which is submicron level, whereas 

the SEI thickness is less than 100 nm, and the influence from salts.  

 

 

Figure 1.15 (a) schematic illustration of the cell setup for in situ tomographic X-ray imaging. (b) 

2D slice through reconstructed microstructure after plating; (c) 2D slice through reconstructed 

microstructure after stripping, showing the presence of “dead” lithium.[39]  

 

Magnetic resonance imaging (MRI) is also investigated as an in situ, non-invasive tool to 

study the dendrite growth. Even through the spatial resolution of MRI is poor (60 µm * 376 µm 

along x and y directions), this time-resolved technique can be used to diagnose dendrite growth 

real-time in a pouch cell, as exampled in Figure 1.16.[40]  
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Figure 1.16 (a) schematic representation of the bag-cell battery, and its orientation with respect to 

the static magnetic field in the NMR spectrometer; 3D MRI images of (b) in pristine stage and (c) 

after charging.[40]  

 

1.4.3 SEI chemical composition 

Lithium instantaneously reacts with a solvent to form an electrically insulating and 

ionically conductive interface (solid electrolyte interphase, SEI), which physically prevents the 

direct contact between Li and the solvent, making Li dynamically stable in some organic solvents. 

The passivation by SEI makes it possible to operate a lithium metal cell under a reductive 

environment and extend the operation voltage window to 4 V and above. SEI layer is related to 

the electrolyte composition (including salts, solvents, and additives) and strongly affects the 

lithium morphology and cycling performance of a lithium metal battery. It is the most important 

yet mysterious component of lithium metal anode.[41,42]  

X-ray photoelectron spectroscopy (XPS) is one of the most popular and effective tools to 

study the global SEI chemical compositions.[22,23,43] It has high surface sensitivity with a 

detecting depth of 10 nm. XPS depth profiling allows to detect the chemical information of 

subsurface. Qualitative and quantitative composition analysis can be achieved by well controlled 

experiment. Since XPS is highly surface sensitive, differentiating the surface salt residue and the 

actual SEI layer is critical. Properly rinsing the sample is necessary. Figure 1.17 is an example 
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showing influence of rinsing process: surface salt residue can be removed by complete solvent 

rinsing (SEI formed in 4M LiFSI + 2M LiTFSI in DME). 

 

 

Figure 1.17 The influence of rinsing process on XPS results. 

 

It has long believed that the SEI has a Mosaic structure, namely Li2CO3, Li2O, LiF, 

polyolefins and semicarbonates are mixed forming a surface layer. [44] Recently the Mosaic type 

of SEI was directly imaged by Li et al [24] using cryo-TEM, as shown in Figure 1.18a and b, 

exhibiting that crystalline Li2CO3 and Li2O embedding in an amorphous matrix. They also 

observed another multilayer model, where Li2O lies outside layer (Figure 1.18c and d) using an 

FEC electrolyte. The correlation of SEI nanostructure and the battery performance needs further 

investigation. 
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Figure 1.18 (a) and (b) Mosaic type of SEI; (c) and (d) Multilayer type of SEI observed by cryo-

TEM.[24] 

 

1.4.4 Quantitative analysis 

Quantitatively studying the deposited lithium and inactive lithium have been challenging 

for decades. Nuclear magnetic resonance (NMR) has the capability to distinguish lithium ions in 

SEI and lithium in metallic status.[45–47] Bhattacharyya et al [46] firstly quantifies the 

mossy/dendritic lithium and smooth deposited lithium by 7Li NMR. As demonstrated in Figure 

1.19a, they utilized skin-depth effect (the finite penetrating ability of radiofrequency field) to 

differentiate dendritic lithium and bulk lithium. For lithium dendrites whose diameter is less than 

2 µm, the RF could fully penetrate so that the signal is proportional to volume/mass; for bulk 

lithium, RF could only partially penetrate so that the signal is proportional to area. Figure 1.19b 

shows an example of LiCoO2-Li cell during the first cycle: MLi is the total mass of deposited or 
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stripped Li extracted from electrochemistry; Mµ is measured microstructure Li, taking into account 

the skin-depth problem; MSD is MLi - Mµ. Even through NMR has the capability to distinguish SEI 

and metallic lithium, but the method introduced here is only effective in dendritic lithium 

measurement. In many advanced electrolytes, deposited lithium is no longer dendritic, but dense 

with little porosity, making NMR difficult to quantify.  

 

 

Figure 1.19 (a) schematic explaining “skin-depth” effect that the radiofrequency penetration in a 

block of lithium metal and in the whisker-like dendritic structures; (b) total mass of lithium 

deposited or stripped MLi(t) (extracted from the electrochemistry) can be used to calculate the mass 

of deposited lithium MSD(t) and lithium microstructures Mµ(t), taking into account the skin-depth 

problem.[46] 
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1.5 Motivation and Outline 

The slow progress of battery technologies has become the bottleneck of many of today’s 

cutting-edge electronic technologies, for example, electric vehicles and portable electronics. In 

order to realize next generation high-energy batteries, new cathode and anode materials are 

urgently needed.  

For the cathode material, lithium (Li) rich layered oxides (LRLO) exhibit high reversible 

specific capacities over 300 mAh g-1, attributing to the oxygen redox reaction. However, oxygen 

activity comes with instability in the form of oxygen loss, which is associated with irreversible 

voltage decay and capacity fading. In Chapter 2, a joint study of DFT calculation and experiments 

was carried out to investigate the elemental doping effects on LRLO performances. Calculation 

proves that incorporating 4d elements, such as Mo, enhances the material’s structural stability by 

altering the local band structure and impeding oxygen vacancy formation. Experimentally, Mo is 

co-doped with Co into Li[Li0.2Ni0.2Mn0.6]O2, showing notably reduced voltage decay and capacity 

fading without sacrificing energy density and cycle life. 

 For anode materials, Li metal is critical to break the energy-density bottleneck of current 

Li-ion chemistry. Inactive Li formation is the immediate cause of capacity loss and catastrophic 

failure of Li metal batteries. However, its composition has not yet been quantitatively studied due 

to the lack of effective diagnosis tools that can accurately differentiate Li+ in solid electrolyte 

interphase (SEI) components and the electrically isolated unreacted metallic Li0, which together 

comprise the inactive Li. It is generally assumed that the low CE is dominated by the continuous 

repairing of SEI fracture that consumes both electrolyte and active Li metal[48], though a few 

works also suggested that unreacted metallic Li0 may increase the tortuosity at the 
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electrode/electrolyte interphase and decrease the CE[28,49]. Overall, most of these assumptions 

and hypothesis are observational, while the actual contribution to capacity loss from the SEI 

formation has never been successfully quantified. Consequently, efforts may be misdirected as we 

strive to make Li metal a valid anode material. Differentiating and quantifying the Li+ and Li0 

remaining on the electrode after stripping, therefore, becomes the key to understanding the 

mechanisms leading to capacity decay. Chapter 3 detailly introduces a new analytical method, 

Titration Gas Chromatography (TGC), to accurately quantify the contribution from unreacted 

metallic Li0 to the total amount of inactive Li. Using the new TGC method, in Chapter 4, we 

identify the Li0, rather than the (electro)chemically formed Li+ in SEI, as the dominating cause for 

the inactive Li and capacity loss. Coupling the measurements of the unreacted metallic Li0 global 

content to the observations of its local micro- and nano-structure by cryogenic electron 

microscopies, we also reveal the formation mechanism of inactive Li in different types of 

electrolytes, and determine the true underlying cause of low CE in Li metal deposition and 

stripping. We ultimately propose strategies for highly efficient Li deposition and stripping to 

enable Li metal anode for next generation high-energy batteries. Chapter 5 summarizes the new 

findings and future perspectives.  

 

Chapter 1, in part, is a reprint of the material “Key Issues Hindering a Practical Lithium 

Metal Battery” as it appears in the Trends in Chemistry, Chengcheng Fang, Xuefeng Wang, Ying 

Shirley Meng, 2019, 1, 152-158. The dissertation author was the primary investigator and author 

of this paper. The author wrote the paper. 
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Chapter 2 Mitigating Oxygen Release in Anionic-Redox-Active Cathode 

Materials by Cationic Substitution through Rational Design 

 

2.1 Introduction 

Lithium ion battery technology has enabled the advancement of handheld devices and 

electric vehicles, and has reached to grid-scale storage markets. To further these technologies, 

improving battery life and extending electric vehicle ranges, the energy density of LIB cathodes 

must increase well beyond the current reach of commercially available cathodes[50,51] Lithium 

rich layered oxide cathodes have sparked intense interest due to their strikingly high capacities, in 

excess of 250 mAh/g—well beyond the capacity of current commercial cathodes such as LiCoO2, 

LiMn2O4 and LiFePO4 (160, 120, and 168 mAh/g, respectively) [52].  This is generally attributed 

to anionic redox behavior—a phenomenon under intense scrutiny, yet widely accepted as the 

source of this capacity[53–55]. Unfortunately, the increased capacity is accompanied with a host 

of problems, including transition metal (TM) migration [56], surface phase transformations [57], 

and the irreversible release of oxygen[58,59]. Furthermore, this oxygen loss subsequently reduces 

the barrier for transition metal migration [60]. A combination of these effects leads to characteristic 

voltage decay and capacity fade. Many methods have been employed to combat this rapid 

degradation, including surface modification[61,62] and coating [63], morphological control [64], 

and incorporation of dopants [65]; each method shows a degree of improvement in one aspect of 

cycling, yet a comprehensive solution to Li-rich layered oxide cathodes shortcomings is still 

lacking. Despite the clear role of surface phase evolution in lithium rich layered oxide cathodes, 

the majority of oxygen activity occurs in the bulk, and doping remains an effective strategy for 

modifying bulk properties.  
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Most recent computational advances have described the notion of anionic redox in terms 

of two general phenomena: reorientation of oxygen ions into peroxo-like oxygen dimers, in the 

case of 4d transition metal layered oxides[55,66], and more relevant to 3d transition metal elements, 

the alignment of two lithium ions across an oxygen atom creating labile oxygen states, susceptible 

to redox [67]. Looking at doping in particular, an extensive amount of ab initio calculations and 

experiments have been performed in Li-rich layered oxide cathodes. Computationally, density 

functional theory (DFT) studies generally provide insight into structural modification, band 

structure, voltage, and diffusion behavior. Though the majority of these studies lack experimental 

interpretation, and, similarly, if experimental doping exists, these experiments lack description in 

terms of this computational work. A few noteworthy exemptions include the work of Deng et al. 

[65], Wang et al. [68], Xiao et al. [69],  and Gao et al. [70]. Deng et al. [65] and Wang et al. [68] 

performed a range of cationic substitution experiments on lithium-rich layered oxides for a range 

of TM stoichiometries, and substituting Al, Co Cr, Fe, Ga and Ti into the NiMn framework; results 

showed an increased initial charging plateau for the Co substitution and decreased plateau for the 

Ti substitution, attributed to the degree of overlap between the dopant t2g and O 2p orbitals, 

correlated to the extent of electron localization [65]. This work was followed up by a computational 

explanation of the impact of cation substitution on oxygen evolution, attributing increased oxygen 

loss to an effective decrease in band gap. The band gap is thought to serve as an impediment to 

charge transfer, a prerequisite for oxygen evolution [69]. Gao et al. [70] and Kong et al. [71] have 

performed the most comprehensive computational screening, both applied to Li2MnO3, Kong 

performing a comparative study between the classical layered and Li-rich analogue. Gao et al. [70] 

calculate oxygen release energies by removing anions with the lowest Bader charge on delithiation, 

predicting Nb-doping as a stabilizing agent, and Kong et al. [71] shows that typical dopants are 
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thermodynamically stable within the Li-rich layered oxide framework and have the potential to 

alter electronic conductivity through hole polaron formation. Prior to this work, Gao et al. [72] 

had also calculated the impact of doping Mo into Li2MnO3, predicting a reduced band gap and 

improved Li mobility between Li and TM layers. Aforementioned doping experiments are 

generally difficult to describe via computation due to the potential for effects beyond purely bulk 

doping; as such, low doping amounts are used in this study to aid ease of dopant incorporation and 

prevent notable surface effects. Other experimental doping includes Ba into Li-rich NiMn layered 

oxide (LNMLO) cathode, showing improved rate capability [73] and B-doping into Li-rich 

NiMnCo showing modified crystallization [74], not calculation in this study. A multitude of other 

doping studies generally show that substitution of a small percentage of metal cations significantly 

alters cathode performance, though most experimental studies generally lack spectroscopic data 

and further lack the theoretical framework to understand the role of the dopant in these changes. 

Moreover, the importance of local environment to the dopant is not addressed in most 

computational work.  

This work uniquely combines ab initio calculations of oxygen stability in LNMLO cathode 

material with experimental synthesis and characterization based on these findings, focusing on the 

notion of site-dependent anion stabilization in the lithium rich layered oxides. Analysis of the 

delithiated structure, subsequent structural changes, and bonding environment changes increase 

the complexity of the model, more closely resembling the true nature of an experimental material. 

Using first principles approaches, we show that oxygen vacancy formation is highly dependent on 

the local bonding environment, which has been shown to vary with the state of charge of the 

cathode. Using this site-based approach, we relate oxygen stability to the local environment 

changes during cycling. Findings of formation energies are rationalized using calculated data, 
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showing a strong influence of doping on the charge density distribution, affecting the potential to 

form of oxygen vacancies. Doping of LNMLO with Al, Ti, Co, and Mo is then performed, clearly 

impacting the initial charging plateau associated with oxygen redox and loss. Al and Ti doping 

show little change to the oxygen redox plateau, as predicted by computation of the E
F
Ov calculations. 

Co-doping shows the opposite affect, due to increased oxygen loss from the lattice, again as 

predicted. When co-doped with Co and Mo, reduced oxygen loss, reduced voltage fade and 

improved capacity retention are observed. Incorporation of the Mo dopant is evident through X-

ray diffraction, X-ray photoemission spectroscopy and energy dispersive X-ray spectroscopy. 

These findings demonstrate that ab initio calculations can be used to rationally select cation 

dopants to improve oxygen stability within the bulk of lithium rich layered cathode materials, 

while leaving oxygen available for reversible redox. 
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2.2 Experimental 

2.2.1 Density Functional Theory (DFT) 

A spin-polarized GGA+U approximation to the DFT was employed, to account for electron 

correlations in transition metal and rare earth elements. Projector augmented-wave method (PAW) 

pseudopotentials were used as implemented in the Vienna Ab Initio Simulation Package (VASP). 

The Perdew-Burke-Ernzerhof exchange correlation and a plane wave representation for the 

wavefunction with a cutoff energy of 450 eV were used. The Brillouin zone was sampled with a 

k-points mesh of 5 x 4 x 7 for structural relaxations and oxygen vacancy formation energy 

calculations and 10 x 8 x 14 for density of states (DOS) calculations, both by Gamma packing. 

Atomic coordinates and lattice vectors were fully relaxed for each structure. Effective U values 

used in the calculations are provided in the Supplemental Information, applied with the rotationally 

invariant approach [75].  

 

2.2.2 Cathode Synthesis 

Pristine Li[Li0.2Ni0.2Mn0.6]O2 (LNMLO), Co-doped Li[Li0.144Ni0.136Co0.136Mn0.544]O2 

(LNMLO-Co), and Mo-doped Li[Li0.144Ni0.136Co0.136Mn0.544]0.99Mo0.01O2 (LNMLO-CoMo) 

materials were synthesized by carbonate co-precipitation method (CCP).  TM nitrate solutions 

(Ni:Mn = 1:3, Ni:Co:Mn = 1:1:4, 1M) were titrated into NaCO3 solution (0.2 M) under stirring. 

The pH value during the co-precipitation process was carefully controlled between 7.80 and 7.85 

to avoid hydroxide precursor generation. The slurry was then aged at 80 oC for 12 hours. After 

washing and drying, the TM carbonate precursor was sufficiently mixed with a stoichiometric 
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amount of Li2CO3 and MoO2. The two-step calcination conditions are 500 oC for 5 hours and 850 

oC for 15 hours. 

Al-doped Li[Li0.2Ni0.19Mn0.59Al0.02]O2 (LNMLO-Al) and Ti-doped 

Li[Li0.2Ni0.2Mn0.59Ti0.01]O2 (LNMLO-Ti) lithium rich layered oxide cathode materials were 

prepared through hydroxide co-precipitation method (OHCP). Synthesis of TM (Ni, Mn) 

hydroxide precursors was detailed in our previous work [76]. Then the as-prepared TM precursors 

were mixed with a stoichiometric amount of LiOH·H2O and Al2O3 (for Al-doped sample). Ti was 

incorporated during co-precipitation process by using Ti(OC4H9)4. After grinding for 30 minutes, 

the mixture was then annealed by two steps, 480 oC for 12 hours and 900 oC for 12 hours in air, to 

get the final product.  

 

2.2.3 X-ray Diffraction (XRD) 

XRD spectra were acquired using a Bruker D8 advance diffractometer with a Bragg-

Brentano θ-2θ geometry and a Cu Kα source (λ = 1.54 Å). Samples were scanned from 10° to 80° 

at a scan rate of 0.05o/step. Rietveld refinement was performed using FullProf software.  

 

2.2.4 X-ray photoemission spectroscopy (XPS) 

XPS was performed using a Kratos AXIS Supra with the Al anode source operated at 15 

kV. The chamber pressure was < 10-8 Torr during all measurements. High-resolution spectra were 

calibrated using the hydrocarbon C1s peak at 284.6 eV. Data fitting was performed using CasaXPS 

software using a Shirley-type background. 

 

2.2.5 Electrochemical Measurement 
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Electrochemical performances were measured using an Arbin battery cycler in 

galvanostatic mode between 2.0 – 4.8 V vs. Li/Li+, at a current density of 12.5 mA/g for first cycle, 

25 mA/g for following cycles. Cathodes, consisting of 80 wt % of active materials, 10 wt % of 

Super P carbon and 10 wt % of poly(vinylidene fluoride) (PVDF) binder, were assembled into 

standard 2016 coin cells with Li metal as the anode and 1 M LiPF6 in ethylene carbonate/dimethyl 

carbonate (EC:DMC in 3:7 weight ratio) as the electrolyte. The mass loading is ~ 3 mg/cm2. The 

plateau length refers to the capacity above 4.4 V after aligning the plateau voltage of doped 

materials to that of pristine materials. Electrochemical impedance spectroscopy (EIS) 

measurements were carried out with 10 mV perturbation and ac frequencies from 0.01 to 1 × 106 

Hz on galvanostatic cycled electrodes at OCV and 30 cycles. The electrodes were assembled in a 

R2016 coin cells, where the active materials are the working electrodes and Li metal serves as the 

counter electrode. A Solatron 1287 Potentiostat was used to measure the impedance. After the EIS 

measurements were taken, an equivalent circuit model was fit to the data to analyze the reactions 

that took place using Z view software (v. 3.4a, Scribner Associates, Inc.). 
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2.3 Results and Discussion 

2.3.1 Oxygen Vacancy Formation Energy 

A model supercell was used containing 14 Li (2 within the transition metal layer), 3 Ni, 7 

Mn and 24 O, corresponding to a stoichiometry of Li[Li2/12Ni3/12Mn7/12]O2. In this manuscript, the 

fully lithiated state is referred to as “pristine”, and the lack of dopants as “undoped”. For doping 

studies, one ion, M, is substituted for Mn, resulting in a stoichiometry of 

Li[Li2/12Ni3/12Mn6/12M1/12]O2, similarly referred to as “M-doped”. Optimal coordination of atoms 

within the transition metal layer were determined through structural relaxations, and are consistent 

with previously published work [57]. This configuration, shown in Figure 2.1a, creates four local 

TM environments surrounding oxygen ions, though this number is expanded with the 

incorporation of dopants and delithiation of the structure. Li-rich materials initial charging plateau 

following transition metal redox is attributed to oxygen evolution [64]. As such, the state of 

delithiation selected for analysis of oxygen evolution is at a lithium concentration of 8/14, referred 

to as “delithiated”. The relaxed structure on delithiation of the supercell was determined by 

analyzing energies of all permutations of lithium removal. From this relaxed supercell, each 

oxygen atom was removed and a final calculation was performed. The oxygen vacancy formation 

energy, E
F
Ov, was calculated by 

𝐸𝑂𝑣
𝐹 = 𝐸 (𝐿𝑖 8

12
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where the -1.36 eV correction factor is included to account for overbinding in +U 

calculations, the oxygen vacancy formation energy was determined for each of these sites [77]. A 

similar process was performed for dopant incorporation, first determining the most stable site of 

the particularly dopant, delithiating, and extracting oxygen, further described in the Supplemental 
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Information.  

To briefly discuss current understanding of oxygen redox in Li-rich cathode materials, 

there are a few theories pertaining to the mechanism leading to oxygen oxidation: most prevalent 

theories are the formation of a peroxo-like species [55,78] and the formation of electron holes in 

certain oxygen bonding environments [58,79]. The notion of the peroxo-like formers has been 

experimentally viewed, but further computational and experimental work suggests that this 

phenomenon is limited to the case of 4d and 5d transition metal oxides, which may be 

phenomenologically viewed as having weaker localized bonding with oxygen, and allowing more 

flexible bond angles with the subsequent formation of O-O bonds[78–80]. For the case of more 

traditional, commercially relevant materials consisting of 3d TM elements, TM-O bonds are 

viewed as more rigid. Both computation and experiment view the formation of peroxo-groups in 

these materials unlikely, and further evidence supports the presence of localized electron holes 

[80]. A similar rigidity is observed both in literature [67] and in our model calculations, for TM-

O bonds. It is further noted that through the application of GGA+U, similar to the previously 

demonstrated use of hybrid functionals [67], an increased partial density of states is observed near 

the Fermi energy for oxygen ions exhibiting a Li-O-Li bond (Supplemental Information). Despite 

the advantage of labile oxygen, as reflected in the initial charge capacity of lithium rich layered 

oxides, these easily oxidized anions also exhibit reduced bonding stability and are subject to 

removal. As such, calculation of E
F
Ov is critical in understanding anion stabilization. 
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Figure 2.1 The undoped structural model used in this study contains four general TM 

environments for each oxygen atom: (i) Mn-Mn-Ni, (ii) Mn-Mn-Li, (iii) Mn-Ni-Li, and (iv) Mn-

Ni-Ni; (b) Relaxed structure contains a wider range of neighboring configurations, including the 

formation of lithium dumbbells, isolated at right, around lithium vacancies within the transition 

metal layer (dashed circle). 
 

From the calculated E
F
Ov results, a wide range of E

F
Ov is observed in the undoped, delithiated 

structure. To understand this E
F
Ov variation, it is first necessary to examine the relaxed structure of 

the undoped material, delithiated to the point where oxygen is experimentally observed to release 

from the lattice. The broad range of local atomic environments in the relaxed structure is seen to 

directly impact E
F
Ov, and is generally overlooked in simulated oxygen vacancy formation energy 

calculations. A critical feature of this relaxed structure is the formation of the lithium dumbbell or 

the migration of lithium ions to tetrahedral sites surrounding a TM-layer lithium vacancy, shown 

in Figure 2.1b [57]. A few trends are observed related to the variation in E
F
Ov in Figure 2.2. The 

lowest energy sites contain three critical environmental factors: (1) the presence of a Ni nearest 

neighbors generally results in a lower oxygen vacancy formation energy, due to reduced 
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electrostatic repulsion between the oxygen vacancy (effectively a positive charge) and the less 

positive Ni cation [60]; (2) a minimized coordination with cations; and (3) subsequently occurs 

near a TM layer lithium vacancy and hence is in proximity to a tetrahedral lithium ion. The 

migration of lithium to the tetrahedral site creates a local environment loosely resembling a 

trigonal plane with a tetrahedral lithium, Ni ion, and Mn ion as vertices. Intuitively, this distorted 

trigonal planar environment does not well suit the orbital symmetry of oxygen ions, and the 

reduced bonding stability is evident through the reduced E
F
Ov.  

 

 

Figure 2. 2 Distribution of oxygen vacancy formation energies, E
F
Ov, for each oxygen site for a full 

range of dopants. Representative bonding environments are indicated to reflect their relative E
F
Ov. 

 

2.3.2 Impact of Dopants on Oxygen Stability 

Generally, a similar range in E
F
Ov is present in the doped and delithiated structures, though 

doping is seen to alter the distribution and magnitude of these energies. Al, Ti, Co and Mo were 
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selected as representative dopants for further analysis, either showing little (Al, Ti) or notable 

changes (Co, Mo) in E
F
Ov. Of the simulated dopants, Mo and Ru are predicted to raise the E

F
Ov of 

the lowest energy site for oxygen release. Despite Ru having shown an enhanced E
F
Ov, as well as 

interesting properties when used in lithium rich layered oxides, showing the formation of peroxo-

like species on discharge [81], the advantages of Ru doping are far outweighed by its cost, and 

hence will not be further discussed as a dopant in this work. Similar to the undoped scenario, the 

lowest E
F
Ov is present at same local environment displaying the near-trigonal planar configuration. 

Al and Ti are further discussed for analytical comparison due to the calculated E
F
Ov being similar 

to that of the undoped material, and are of further interest due to their reduced cost and low toxicity, 

respectively. Last, Co was selected due to its predicted decrease in E
F
Ov, enhancing oxygen release, 

and its relevance in commercial cathode use. Co is also unique in that its predicted location is in 

proximity to the most volatile oxygen site (i.e., lowest E
F
Ov), which may further promote instability 

and oxygen loss. 

To rationalize this predicted oxygen vacancy formation energy change, a site-dependent 

analysis of the delithiated charge density distribution and density of states (DOS) were performed 

to determine if the dopant affected the electronic behavior of the cathode material. First, a Bader 

charge analysis was performed to observe trends in electron density with the incorporation of 

dopants, detailed in the (Table 2.5). In previous oxygen vacancy formation studies [70,72], oxygen 

sites with the lowest Bader charge and largest Bader charge difference between pristine and 

delithiated states are supposed to evolve most easily, and these sites are generally used for the E
F
Ov 

calculations. While this is the case for incorporated 3d transition metal dopants, Mo-doping shows 

a discrepancy between oxygen sites with maximum Bader charge difference and minimum E
F
Ov. 

Mo-doping also shows the highest net increase in charge density associated with oxygen sites.  
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To better understand electron charge redistribution, charge density differences were 

calculated (Figure 2.3). For clarity, charge density differences between undoped and doped 

structures were calculated for the same dopant site, and in the case of Co will not reflect the exact 

bonding environment present in the minimum E
F
Ov value. However, for the intent of observing 

change in charge distribution, the simulation yields fundamentally applicable results. Intuitively, 

Al-doping presents a local charge deficiency, and the redistribution of charge on surrounding O 

2p orbitals is a coulombic effect; this redistribution is local, and does not extend far beyond the 

immediate AlO6 octahedron. Converse to Al, Ti-doping predicts an increased charge density on 

the oxygen in the surrounding TiO6 octahedron; though similarly, the charge redistribution does 

not extend beyond the octahedrally coordinated oxygen. Variations in the charge density of Co- 

and Ti-doped structures reflect the modified bonding relative to the original Mn environment. The 

Co bonding results in a charge reduction on surrounding oxygen ions; as this Co is actually 

neighboring the lowest E
F
Ov site, this oxygen ion will directly experience the reduced charge density 

and will more directly impact this site. Last, Mo shows the most significant charge redistribution, 

increasing charge density to local oxygen p orbitals. Interestingly this charge redistribution extends 

beyond the MoO6 octahedron, increasing the charge density of the trigonal-planer-like oxygen site, 

a potential source of reduction of E
F
Ov.  
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Figure 2. 3 The difference in charge densities between undoped and doped structures (delithiated 

state; iso-surface of 0.01 electrons/Bohr3) elucidates the alteration of electron distribution and 

bonding upon introduction of a dopant. Most notably, Mo-doping results in diffusely distributed 

electron excess, having a more notable change to the most susceptible bonding environment to 

oxygen loss. Ov,min (gold ion) denotes the minimum E
F
Ov site. 

 

E
F
Ov results are further described by the DOS calculations of the lowest E

F
Ov oxygen site and 

surrounding ions. Figure 2.4 shows that most dopants have little local impact on the DOS of this 

site, but for the case of the Mo-dopant a notable shift of the energy of local bonding orbitals below 

the Fermi energy is observed. This shift creates a barrier to charge transfer between bonding and 

antibonding orbitals for this particular oxygen ion, subsequently impeding the removal of oxygen 

from the oxygen sublattice. Integration of the oxygen DOS between the Fermi energy and -1.5 eV 

shows a 27% increase in the electron density in the O 2p orbitals. This extra charge, due to the 

charge reconfiguration from Mo-doping, is the likely source of the relatively increased Fermi 

energy of the local bonding orbitals.  
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Figure 2. 4 The partial density of states for the lowest E
F
Ov site prior to oxygen removal. Analysis 

shows that Mo doping shifts the bonding states below the Fermi energy, and increases electron 

density below the Fermi energy, a potential sources of anion stabilization. 

 

2.3.3 Experimental Observations 

Guided by the E
F
Ov calculations, synthesis preceded with the dopants previously discussed 

in terms of calculation results: Co, Mo, Al, and Ti are, incorporated into pristine Li-rich layered 

oxide cathode (LNMLO). 

Co-doped LNMO (LNMLO-Co) was examined to observe the potential decrease in oxygen 

stability of the cathode material. It is known that Co readily forms a solid solution with LNMLO 

at large concentrations, allowing an amount of Co to be doped into LNMLO consistent with 

calculations. Shown in the works of Deng et al. and Wang et al., electrochemical cycling can be 

partially described in terms of the calculated oxygen stability [65,66]. The initial charging plateau 

in the cycling profile is attributed to both reversible anion redox and irreversible oxygen evolution. 

As predicted computationally, the Co-doped sample shows an extended initial charging plateau 

relative to the undoped material. As shown in Figure 2.5a, the plateau length of LNMLO is 228.0 

mAh/g, while that of LNMLO-Co increases to 266.9 mAh/g. Cycling instability of the material is 

further presented in the form of the severe voltage decay after 50 cycles, shown in Figure 2.5c. 

The average voltage retention after 50 cycles decreases from 97% to 93.6% after Co doping. As 
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compared in Figure 2.5e, LNMLO-Co delivers significantly improved discharge capacities in the 

initial several cycles but drops sharply. The LNMLO-Co shows a first discharge capacity of 290 

mAh/g, while that of pristine LNMLO only delivers 220 mAh/g reversible capacity. After 50 

cycles, the capacity of LNMLO-Co only maintains 79.3% of initial capacity, 230 mAh/g. Yet, the 

capacity of LNMLO slightly increases to 232 mAh/g. The experimental observations are in 

complete agreement with the computational prediction that Co doping leads to decreased oxygen 

stability, resulting in increased irreversible oxygen gas evolution.  

Aiming to provide insight for practical application, obtaining high energy density while 

maintaining excellent cycling stability, Mo doping is performed on LNMLO-Co material. 1% of 

Mo was doped into bulk of LNMLO-Co, as will be evident. Doping of 3% of Mo into LNMLO-

Co (LNMLO-CoMo) structure was also attempted; however, impurity peaks appear (Figure 2.14), 

consistent with previous literature. 1% is likely near the maximum amount of doping into the 

structure, due to the large ionic radius of Mo [82]. The first charging curve of LNMLO-CoMo 

(Figure 2.5b) shows a reduced initial charging plateau (253.4 mAh/g) compared with LNMLO-Co 

(266.9 mAh/g). This indicates, conversely to the Co material, a reduction in electron charge 

transfer from oxygen, which would otherwise accompany the irreversible oxygen loss from the 

lattice. The material also shows moderately less voltage decay after 50 cycles (Figure 2.5d). The 

average voltage retention improves by 0.6% with Mo doping. Last, and most notably, the specific 

capacity and cycling stability are greatly improved. As shown in Figure 2.5e, LNMLO-CoMo 

delivers a high reversible capacity of 297 mAh/g. After 50 cycles, the capacity remains 256 mAh/g 

with retention of 86.5%. A detailed electrochemical performances comparison of the three samples 

is shown in Table 2.1. Electrochemical Impedance Spectroscopy (EIS) measurements are carried 

out to understand the different electrochemical behaviors of LNMLO-Co and LNMLO-CoMo. As 
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compared in Figure 2.11, at OVC state, both cells only show one semicircle, which represents 

charge transfer resistance (Rct). After 30 cycles, SEI built on the surface of cathode materials, thus 

an additional semicircle can be measured at high frequency region, representing resistance of SEI 

film (Rsei). W is the Warburg impedance related to bulk lithium ion diffusion. The fitting values 

are listed in Table 2.6. Mo-doped sample shows reduced Rct before and after cycling, and much 

smaller Rsei after 30 cycles, indicating that fast electron transfer and facile lithium ion diffusion 

path have been achieved after Mo doping. Even though only 1% of Mo is added, Mo doping in 

deed significantly changes the local electronic structure and crystal structure, thus both electronic 

conductivity and ion diffusion are notably improved. More evidence for Mo incorporation into 

crystal structure will be specified later. The above results clearly show the positive effect of Mo 

doping on electrochemical performance.  

 

Table 2. 1 A comparison of electrochemical performance parameters of LNMLO, LNMLO-Co 

and LNMLO-CoMo. 
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Figure 2. 5 Cycling results of LNMLO, LNMLO-Co, and LNMLO-CoMo. Incorporation of Co 

(a) is shown to increase the initial charging plateau, where Mo-doping (b) reduces the plateau, 

suggesting reduced oxygen gas evolution. Mo-doping further shows reduced voltage decay (d) and 

improved capacity retention (e).   

 

The incorporation of Mo into the structure was verified by X-ray diffraction (XRD), X-ray 

photoemission spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) of focused ion 

beam cross-sectioned secondary particles (FIB-EDS) and scanning transmission electron 

microscopy (STEM) mapping: (1) Figure 2.12 compares XRD and Rietveld refinement results of 

LNMLO, LNMLO-Co and LNMLO-CoMo materials. The lattice parameter variation trend of the 

three materials is shown in Figure 2.6. Co3+ (0.545 Å) doping leads to shrinking of a- and c- lattice 
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parameters compared with pristine LNMLO. A slight a-lattice expansion is caused by Mo5+ (0.61 

Å) substitution into the structure, also noting that Mo5+ doping causes significant expansion of c-, 

due to the increased Mo-O bond length. The increased c-lattice parameter facilitates Li+ diffusion, 

explaining in part the increment of capacity in LNMLO-CoMo material. (2) Figure 2.7 compares 

the XPS analysis of LNMLO-Co and LNMLO-CoMo samples. Results of the XPS suggest that 

most of the Mo dopant takes the Mo5+ oxidation state in the pristine state. Specifically, the two 

peaks at binding energies of 231.7 eV and 234.8 eV are attributed to Mo5+. Weak shoulders at 

higher binding energy of 232.8 eV and 236 eV indicate a small amount of Mo6+ [83]. Oxidation 

states of TM’s are predicted using magnetization data from DFT calculations (Table 2.2), and 

calculate Mo in the pristine state to have a +5 charge. This dopant is predicted to be oxidized to 

Mo6+ on the first delithiation, not explored in this work. Oxidation states of Ni show no change, as 

the peak at 854.5 eV does not shift after Mo doping. Mn appears to be slightly reduced, again 

consistent with computation results. The predicted mixed valence of Mn may enhance the 

conductivity of the material, partially explaining the increased specific capacity [82]. Co is slightly 

reduced after Mo doping, as the satellite peak area increases from 6.84% to 8.99% after doping 

[84]. (3) Further evidence of a homogeneous distribution of the Mo dopant was observed by 

focused ion beam cross-section of a secondary particle coupled with EDS, as shown in Figure 2.15. 

It is noted that Mo-doping has indeed been explored for lithium rich layered oxides Li2MnO3 [85], 

Li[Li0.2Ni0.2Mn0.6]O2 [82], and Li[Li0.2Mn0.54Ni0.13Co0.13]O2 [69,70], and in the case of Li2MnO3, 

Mo5+ was observed by X-ray absorption spectroscopy. Though again, little to no emphasis was 

placed on the stabilization of oxygen within the lattice in these prior works. 
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Figure 2. 6 Lattice parameters of LNMLO, LNMLO-Co and LNMLO-CoMo as determined by 

Rietveld refinement of XRD spectra (Figure 2.12). 

 

 

 

Figure 2. 7 XPS of LNMLO-Co and LNMLO-CoMo show that Mo took the predicted Mo5+ 

valence. Results further show a portion of the Mn is reduced from Mn4+ to Mn3+. 
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Table 2. 2 Impact of dopant on oxidation state change on delithiation and oxygen removal of 

redox-active ions, as measured by simulated magnetizations. The multiplier refers to instances of 

the redox change within a single supercell. 

 

 

Similarly, Al and Ti were chosen to verify the negligible impact on oxygen evolution as 

observed by the electrochemical performance of LNMLO, according to calculation prediction. 

Numerous studies have doped Al and Ti in a range of concentrations, each with varying results 

[86,87]. In spite of discrepancies in optimal doping concentrations, a small amount of substitution 

(1%, 2%) consistently shows notable deviations from the undoped cases. With the intent to prevent 

possible surface coating effects from excess dopant content, 2% Al (LNMLO-Al) and 1% Ti 

(LNMLO-Ti) doping into LNMLO is performed to re-evaluate the impact of doping in terms of 

oxygen behavior. In Figure 2.8a and b, first charging curves of LNMLO-Al and LNMLO-Ti 

materials both show an oxygen plateau of a similar width to that of the undoped LNMLO. 

Specifically, the plateau length of LNMLO-Al and LNMLO-Ti are 212 and 206 mAh/g, 

respectively, near that of pristine LNMLO is 204 mAh/g, indicating Al and Ti doping have a weak 

influence on oxygen activities; this is in line with calculations, having shown little change in the 

lowest E
F
Ov site. Figure 2.8c and d show further evidence for the relatively small impact of Al and 

Ti doping, exhibiting similar voltage decay to the undoped material after 100 cycles. The average 

voltage retention of LNMLO-Al, LNMLO-Ti and LNMLO are 96.7%, 96.2% and 96.4%, 
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respectively, indicating little change after Al and Ti doping. However, it is worth mentioning that 

our conclusions on Al and Ti doping into lithium rich layered oxides are not in agreement with 

most previous studies, as variations of electrochemical performances were observed after doping 

in these other works. For instance, Nayak et al. reported that doping Li1.2Ni0.16Mn0.56Co0.08O2 by 

Al results in a decreased capacity but improved cycling stability, as well as reduced average 

discharge voltage decay [87]. As mentioned before, Wang et al.’s and Deng et al.’s experimental 

work also shows that higher substitution amounts (6-20%) of Al and Ti doping lead to a 

suppression of oxidation of O2- ions to oxygen [68]. Though based on both of our computational 

and experimental results, we speculate the more drastic changes in electrochemical behaviors in 

these previous works may to some extent be attributed to incomplete dopant incorporation and 

subsequent surface effects. 
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Figure 2. 8 (a) First charging profiles of LNMLO-Al and LNMLO-Ti materials, compared with 

pristine LNMLO. Oxygen plateau length of doped materials is similar to that of pristine material, 

commensurate with DFT calculations. (b) LNMLO-Al, LNMLO-Ti and LNMLO show similar 

voltage decay after 100 cycles, indicating Al- and Ti- doping does not have influence on 

electrochemical performance. 

 

To verify the phase purity and observe structure changes of as-synthesized materials, X-

ray diffraction and subsequent Rietveld refinement were performed (Figure 2.13). For LNMLO-

Al, two dopant ions per formula unit substitutes one Ni2+ (0.69 Å) and one Mn4+ (0.53 Å) to 

maintain charge balance during synthesis. The decreased lattice parameters of LNMLO-Al can be 

ascribed to the smaller ionic radius of Al3+ (0.535 Å). Accordingly, the refined experimental a-

lattice parameter of LNMLO-Ti does not show obvious change compared with that of undoped 

LNMLO. Variation in structural parameters with cation substitution was also calculated by DFT 

(Table 2.3). It was predicted that Al-doping results in a slight contraction of the a and c lattice 

parameters, showing reduced bond lengths in the MO6 octahedron. Further consistent with 
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experiment, Ti is predicted to expand the c lattice parameter, due to the increased Ti-O bond 

lengths relative to the replaced Mn-O bond lengths. As shown in Figure 2.13 and Table 2.3, 

experimental fittings show these values to generally follow the predicted trends. The XRD results 

suggest Al and Ti have been successfully doped into the structure.  

 

Table 2. 3 Lattice parameters from DFT calculation (Theoretical) and from Rietveld refinement 

(Experimental) for Al and Ti doping 

 

 

Experimentally, a variety of dopants, including Al, Ti, Co and Mo, were selected to 

evaluate the impact on initial charge plateau, voltage fade, and capacity loss, and results are 

presented in the context of ab initio calculations. The observed electrochemical performance 

suggests that Al and Ti doping shows little impact on oxygen activities, having no effect on the 

width of the initial charging plateau; Co leads to decreased oxygen stability, increasing the width 

of the plateau; incorporation of Mo can mitigate oxygen loss from the lattice to some extent—

consistent with E
F
Ov calculations. In this work, both theoretical and experimental findings show 

Mo-doped LR-NMC shows the highest specific capacity and improved cycling stability. 

Full structural model description 

For brevity, a complete description of the model was omitted from the full text. A number 

of considerations were put into the development of a model for the incorporation of a dopant into 

the Li12[Li2Ni3Mn7]O24 supercell. First, the location of the dopant may vary between doping cases. 

As a rule of thumb, delithiation and E
F
Ov calculations were performed on the lowest energy 
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configuration for each dopant scenario. It should be noted that the local environment of a particular 

oxygen vacancy does not necessarily contain the same local environment across dopants. Similarly, 

the incorporation of a dopant is naturally accompanied by an increased variety of local 

environments (Figure 2.9). However, the general trends to remain the same: in the relaxed structure, 

the oxygen vacancy near a combination of a nickel atom, a transition metal layer lithium vacancy, 

and a lithium-layer lithium that has migrated to a tetrahedral dumbbell site consistently produces 

the lowest E
F
Ov site. 

 

 

Figure 2. 9 Incorporation of dopants introduces a wider range local bonding environments. The 

Mo-doped structure is shown as an example. 

 

Mott-Hubbard values used in the GGA+U calculations in this work are provided in Table 

2.4 below. It is apparent that the +U parameter may have a drastic impact on the results of density 

functional theory calculations. Care was taken to use well-established values these cases, and 

where not established for energy storage materials, follow literature values with experimentally 

confirmed values. 
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Table 2. 4 Mott-Hubbard values and references used in the +U calculations in this work [88–97]. 

 

 

Calculation results in the context of oxygen redox 

As shown in previous work, the notion of labile oxygen is observed computationally 

through he increased density of states below the Fermi level of oxygen atoms coordinated with 

TM layer lithium. This work, having used GGA+U similarly shows an increased oxygen density 

of states below the Fermi level for oxygen with a linear Li-O-Li bond (Figure 2.10b), suggesting 

that electronic structure for oxygen redox is still observable using the GGA+U functional. 

Conversely, oxygen sites lacking the Li-O-Li bond lack this delocalized density (Figure 2.10a). 

 

 

Figure 2. 10 An example of an oxygen site in the fully lithiated structure (a) without a Li-O-Li 

linear bond and (b) with a Li-O-Li linear bond, required for labile oxygen states. The presence of 

the Li-O-Li linear configuration shows a greatly increased 2p density of states within 1.5 eV of the 

Fermi energy. 
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Bader charge analysis 

Although unable to quantitatively determine oxidation states, Bader charge analysis is 

useful for examining trends in charge density behavior. Table 2.5 displays the Bader charge for 

the delithiated state and the change in Bader charge after delithiation. Previous ab initio work 

operated under the assumption that oxygen sites with the lowest Bader charge is the most likely to 

evolve, though under Mo-doping there exists a discrepancy between the lowest E
F
Ov site (oxygen 

site 13) and the site with the lowest charge and largest change (oxygen site 5). Analysis was 

performed using a grid-based method as described in reference [98].  

 

Table 2. 5 Bader charge difference between lithiated and delithiated states for undoped and doped 

materials. Items in bold are sites exhibiting the lowest Bader charge and the largest change in 

Bader charge. 
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Electrochemical Impedance Spectroscopy 

Impedance measurement is conducted to investigate the influence of Mo doping on 

electrochemical behavior, including electronic conductivity and bulk ion diffusion. Before cycling, 

both LNMLO-Co and LNMLO-CoMo cells show relatively larger charge transfer impedance than 

that of after cycling, as a formation cycle is needed to reduce the overall resistance. It is clearly 

shows in Figure 2.11 that after Mo doping, the material exhibits much reduced impedance and 

improved ionic diffusion. Table 2.6 lists the quantitatively fitting results of both materials before 

and after cycling.  

 

Figure 2. 11 Nyquist plots of LNMLO-Co and LNMLO-CoMo (a) at OCV and (b) after 30 cycle, 

and corresponding fitting circuits 

 

Table 2. 6 EIS fitting results of LNMLO-Co and LNMLO-CoMo at OCV and after 30 cycle 
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X-ray diffraction  

To observe structural change and verify phase purity, X-ray diffraction and subsequent 

Rietveld refinement were performed on all samples studied in this work. The experimental 

observations of lattice parameters variation for LNMLO-Co, LNMLO-CoMo, LNMLO-Al, and 

LNMLO-Ti, match well with DFT calculation prediction, indicating all dopants have been 

successfully incorporated into the pristine NM structure. For Mo, 1% is the saturate point of doping 

according to previous study [82]. Consistently in the present work, 3% of doping shows impurity 

peaks.  
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Figure 2. 12 X-ray diffraction and Rietveld refinement of LNMLO, LNMLO-Co, LNMLO-CoMo. 

As the ionic radius of Co3+ is smaller than Ni2+ and close to Mn4+, NMC shows shrink lattice 

parameters. After 1% of Mo doping, both a- and c- of LNMLO-CoMo increase compared with 

LNMLO-Co, indicating Mo has been successfully doped into LNMLO-Co structure. 
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Figure 2. 13 X-ray diffraction and Rietveld refinement of LNMLO, LNMLO-Al, and LNMLO-

Ti. LNMLO-Al shows decreased a- and c- lattice parameters due to the smaller ionic radius of 

Al3+; LNMLO-Ti exhibits similar a-, but much higher c-, comparing with LNMLO. 
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Figure 2. 14 3% Mo-doping shows the presence of impurity peaks in XRD. 

 

Evidence of uniform doping distribution 

To confirm the uniformity of Mo distribution, focused ion beam cross-sections of 

secondary particles was performed, allowing a clear view of the distribution of transition metal 

ions through profiles of the primary particles. Using energy dispersive x-ray spectroscopy, a 

uniform distribution of all TMs is observed, suggesting that the Mo dopant is uniformly distributed 

throughout the bulk of the material.  
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Figure 2. 15 Energy dispersive x-ray spectroscopy was performed on a focused ion beam cross-

section of a secondary particle of the Mo-doped material. (a) The Mo map suggests that the Mo is 

evenly disbursed, further evidence of incorporation into the structure. (b) Similarly, a higher 

resolution line-scan shows no accumulation at primary particle boundaries and surfaces. 
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2.4 Conclusion 

Oxygen vacancy formation energies, E
F
Ov, were calculated for a wide range of dopants using 

ab initio calculations. The range of calculated E
F
Ov were shown to be strongly dependent on local 

environment, both compositionally and structurally. The source of E
F
Ov change between dopants 

was attributed to the charge density modification and subsequent change in band structure, 

increasing the E
F
Ov in the case of a Mo dopant. These calculated E

F
Ov values guided experimental 

doping, showing results in line with computational prediction. Al- and Ti-doped materials showed 

little change to the initial charging plateaus, consistent with the predicted E
F
Ov, where Co-doping 

showed an increase in the plateau width, indicating exaggerated oxygen loss from the lattice. Mo-

doping experiments shows improved cycling stability through reduced voltage decay, suggesting 

oxygen is stabilized by the incorporation of Mo. Experiments show the presence of a majority of 

Mo5+ ions, as predicted. When considering the nature of oxygen activity within cathode material, 

it is clear that the formation of molecular oxygen in the bulk of the material accounts for the 

majority of this irreversible capacity loss. As such, methods of mitigating must extend beyond 

surface modification. Calculation results show that doping of particular elements (Mo and Ru) 

work to reduce the degree of oxygen loss from the lattice, while leaving the oxygen available for 

redox. However, the degree of dopant incorporation is limited by solubility of the dopant in the 

structure. This work validates cationic substitution as a fundamental method of improving capacity 

retention of lithium rich layered oxide cathodes, and should be combined with advanced surface 

modification to result in improved high capacity cathodes. This work further demonstrates the 

application of density functional theory towards the rational design of cathode materials, 

streamlining the design process and speeding the optimization of these materials. 
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Chapter 2, in full, is a reprint of the material “Mitigating oxygen release in anionic-redox-

active cathode materials by cationic substitution through rational design” as it appears in the 

Journal of Materials Chemistry A, Thomas A. Wynn*, Chengcheng Fang*, Minghao Zhang, 

Haodong Liu, Daniel M. Davies, Xuefeng Wang, Derek Lau, Jungwoo Z. Lee, Bo-Yuan Huang, 

Kuan-Zong Fung, Chung-Ta Ni and Ying Shirley Meng, 2018, 6, 24651- 24659. The dissertation 

author was the co-primary investigator and author of this paper. All experiment parts and 

corresponding writing were performed by the author.  
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Chapter 3 Titration Gas Chromatography:  A New Method for Inactive 

Lithium Quantification 

 

3.1 Introduction 

The formation of inactive Li, also known as “dead” Li, is the immediate cause of low CE, 

short cycle life and violent safety hazard of LMBs. It consists of both (electro)chemically formed 

Li+ compounds in the solid electrolyte interphase (SEI) and the electrically isolated unreacted 

metallic Li0 [99,100]. It is generally assumed that the low CE is dominated by the continuous 

repairing of SEI fracture that consumes both electrolyte and active Li metal[48], though a few 

works also suggested that unreacted metallic Li0 may increase the tortuosity at the 

electrode/electrolyte interphase and decrease the CE[28,49]. Overall, most of these assumptions 

and hypothesis are observational, while the actual contribution to capacity loss from the SEI 

formation has never been quantified. Consequently, efforts may be misdirected as we search for 

solutions to the low CE. Differentiating and quantifying the Li+ and Li0 remaining on the electrode 

after stripping, therefore, becomes the key to understanding the mechanisms leading to capacity 

decay. But this is quite challenging due to the lack of proper characterization tools. Microscopy 

and other imaging tools, such as operando optical microscopy[12], in-situ environmental 

transmission electron microscopy (TEM)[29,101], X-ray microtomography[38] and magnetic 

resonance imaging (MRI)[40], have all been used to visualize the dynamic growth of Li dendrites, 

but most of them only provide morphological perspective with little chemical information. Nuclear 

magnetic resonance (NMR) utilized as a quantitative and operando tool revealed the Li 

microstructure formation with a resolution of tens of micrograms of Li, however the limited 

penetrating ability of radio frequency makes it only effective to quantify dendritic/mossy Li[46]. 
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The X-ray photoelectron spectroscopy (XPS)[102] and cryogenic TEM[24,25] have the capability 

to distinguish between the Li+ in SEI and metallic Li0, but their detection ranges are limited to 

surfaces or local regions, which lack of both quantitative nature and global representation. It is 

thus of essential significance to develop a new set of experimental tools that both qualitatively 

profile the micro/nano-structures of inactive Li, and quantitatively differentiate the SEI Li+ and 

metallic Li0. 

 

 

Figure 3. 1 Schematic illustration of the electrochemical reactions of Li plating/stripping, dendrite 

formation and inactive Li formation. In a Li metal battery, during the plating, Li+ deposits on the 

fresh Li. In commercial carbonate-based electrolytes, Li deposits exhibit whisker-like morphology. 

During stripping, Li dissolves into the electrolyte becoming Li+. If the dissolution occurs firstly on 

the roots of the Li whiskers, the top parts will disconnect from the electronic conductive network 

and thus become electrochemically inactive, forming inactive Li, which consist of SEI and 

unreacted metallic Li wrapped by the insulating SEI. 

 

 

3.2 Titration Gas Chromatography (TGC) Method 

3.2.1 TGC concept 

Inactive Li consists of diverse Li+ compounds within the SEI, such as LiF, Li2CO3, Li2O, 

ROCO2Li[16,103], and of unreacted metallic Li0 which is isolated by SEI from the electronic 
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conductive pathway. The pivotal difference between the SEI Li+ and metallic Li0 that inspired us 

is their chemical reactivity: only the metallic Li0 reacts with protic solvents (e.g. H2O) and 

generates hydrogen gas (H2). The solubility/reactivity of known SEI species with H2O are listed 

in Table 3.1. Noting that the possible LiH-existence[26,104,105] in inactive Li might affect the 

metallic Li0 quantification because LiH also reacts with water and produces H2, the exclusion of 

LiH in the present study is critical, which will be detailed later. Therefore, we combine H2O 

titration (the step to react all metallic Li0) and gas chromatography (the following step to quantify 

the H2 generated in the reaction) into a single analytic tool, hereafter referred to as TGC (schematic 

process in Figure 3.2), which is able to quantify the content of metallic Li0 based on the following 

reaction: 

2Li + 2H2O → 2LiOH + H2↑.  

Coupling with an advanced barrier ionization H2 detector (BID), the measurement 

accuracy for metallic Li0 in the designed system is as low as 10-7 g. 
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Table 3. 1 The solubility/reactivity of known SEI species with H2O 

 

 

 

Figure 3.2 demonstrates the typical processes of the TGC method for the inactive Li 

quantification, including the following six main steps. (1) After plating and stripping, the Li||Cu 

coin cell was disassembled in an Ar-filled glovebox. (2) Both the Cu foil and separator on the Cu 

foil side were harvested without washing and sealed into a container by a rubber septum which is 

stable against water with an inside pressure of one atmosphere in the glovebox. (3) After 

transferring the sample container outside of the glovebox, 0.5 mL of H2O was injected into the 

container to react with the inactive Li completely. (4) 30 µL of the resultant gas was taken from 

the container into the GC system by a gas-tight syringe. (5) The H2 amount was measured by the 

GC. (6) The content of the metallic Li0 was determined by converting the corresponding H2 amount 
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based on a pre-established standard calibration curve. All the processes minimize the potential 

damage and contamination during sample transfer, guaranteeing trustworthy and accurate results.  

 

 

Figure 3. 2 Schematic working principle of the TGC method. Combing H2O titration on 

inactive Li sample and H2 quantification by GC, metallic Li0 amount is determined based on the 

chemical reaction 2Li + 2H2O → 2LiOH + H2↑. 

 

In the GC column, the stationary phase has a different affinity with different species, so 

that gas species can be differentiated by retention time. Figure 3.3a shows the GC chromatograms 

of background gases from an empty container well sealed in the Ar-filled glovebox. The peaks at 

1.45 min, 2.42 min, and 3.21 min represent Ar, N2 and CH4, respectively. When a H2O titration 

process is applied on a small piece of pure Li metal, H2 will be generated. The H2 characteristic 

peak appears at 1.05 min, as shown in Figure 3.3b 
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Figure 3. 3 Examples of GC chromatograms. (a) Blank control group. The background gas from 

glovebox. (b) Gases with H2 after H2O titration on metallic Li. 

 

3.2.2 Calibration 

The H2 concentration was calibrated and measured using Shimadzu GC-2010 Plus Tracera 

equipped with a Barrier Ionization Discharge (BID) detector. 99.9999% Helium was used as the 

carrier gas. Split temperature was kept at 200 oC with a split ratio of 2.5 (split vent flow: 20.58 

mL/min, column gas flow: 8.22 mL/min, purge flow: 0.5 mL/min). Column (0.53mm, RT- msieve 

5A) temperature was kept at 40 oC. A BID detector was kept at 235 oC, and BID detector gas flow 

rate was 50 mL/min. All calibration and sample gases were immediately collected via a 50 μL 

Gas-Tight Hamilton syringe before injection. For calibration of H2 concentration, 1500 ppm of H2 

gas was produced by reacting high purity of Sodium with DI water in a septum sealed glass vial. 

5, 10, 15, 20, 25 and 30 μL of produced H2 gas corresponding to 250, 500, 750, 1000, 1250 and 

1500 ppm, respectively, were collected and injected into the GC. The calibration curve was plotted 

and fitted with H2 concentration versus GC measured H2 peak area. The as-established H2 

calibration curve (H2, ppm – detected H2 area) and equation are shown in Figure 3.4a. In order to 
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acquire the exact number of H2 molecules within the container, the H2 concentration calibration 

curve was converted to the mole number of H2 calibration curve as a function of detected area 

based on the following two conditions: 

(1) 1 ppm = 4.08 × 10-8 mmol/mL (1 atm, 298 K);  

(2) Container volume (30 ± 0.5 mL). 

The mole number of H2 calibration curve directly established a relationship between GC 

software reported H2 area and the number of H2 molecules in the fixed TGC set-up, making the 

following inactive Li measurement independent from slight pressure change in virtue of a Gas-

Tight syringe. Based on the chemical reaction 2Li + 2H2O → 2LiOH + H2↑, the standard 

calibration curve and the equation for Li metal mass as a function of the detected H2 area (mLi - 

detected H2 area) are obtained and shown in Figure 3.4b. 

 

 

Figure 3. 4 (a) Original H2 concentration calibration curve as a function of detected H2 area (H2, 

ppm – detected H2 area) and verification with certified GSCO H2 calibration gas. (b) Converted 

metallic Li0 weight calibration curve as a function of detected area (mLi - detected H2 area). 
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3.2.3 Validation of TGC method 

(1) The H2 concentration in ppm as a function of GC detected H2 area (H2, ppm – detected 

H2 area, Figure 3.4a) has been verified by the certified GASCO H2 Calibration Test Gas.  

(2) We then used the commercial Li metal with known weight to verify the as-established 

mLi - detected H2 area relationship (Figure 3.4b). We carefully weighted 9 pieces of commercial 

Li metal with mass ranging from 0.54 to 1.53 mg in the Ar-filled glovebox by a 5-digit balance 

(10-5 g) and then performed the TGC. The detected H2 area as a function of the Li metal weight 

from the 9 pieces of Li metal is shown in Figure 3.5a. The result shows that the mass of Li metal 

is linearly related to (R2 = 99.8%) the detected H2 area, indicating the validity of the TGC system 

for quantifying metallic Li0. In reverse, we calculated the Li metal weight from the detected H2 

area using the mLi - detected H2 area relationship. The TGC measured Li metal weights and balance 

measured Li metal weights are compared in the Figure 3.5b. The exact numbers of TGC measured 

Li metal weights and balance measured Li metal weights are listed in the Figure 3.5c. The 

negligible differences between the TGC quantification and balance measurement indicate the 

validity and accuracy of the TGC method. Noting that the significant digit of the balance is 0.01 

mg (10-5 g), as marked in red in Figure 3.5c, whereas the TGC is 0.0001 mg (0.1 µg, 10-7 g), which 

has been demonstrated in the limit of detection/limit of quantification (LOD/LOQ) analysis. The 

minimal difference between the two quantification methods is mainly ascribed to the inaccuracy 

of the balance, of which the precision is two orders of magnitude smaller than the TGC. 

 



71 
 

 

Figure 3. 5 (a) Nine pieces of Li metal with known weight were tested using TGC set-up. The 

great linear relationship versus detected H2 area indicates the feasibility of this method. (b) A 

comparison between the balance weighed mass and TGC quantified mass of the commercial Li 

metal pieces. Since the accuracy of the balance is two orders of magnitude lower than the TGC 

(10-5 vs 10-7 g), the differentials should mainly come from the balance. (c) The numeric comparison 

between the balance weighted mass and TGC quantified mass of the commercial Li metal pieces. 

 

3.2.4 The possible existence of LiH 

Besides the SEI species listed in Table 3.1, there have been mixed reports regarding the 

existence of LiH in Li metal electrode[26,104,105]. There are two possible scenarios that LiH may 

exist in the Li metal electrodes: 1. LiH in SEI as an electrochemical reduction product at 

excessively negative potentials[104,105]; 2. LiH may largely exist in bulk electrode as another 

type of mossy dendrite[26]. To examine the possible influence from LiH in SEI, we repeatedly 

polarized the current collectors above 0 V, so that only SEI forms without metallic Li0 

deposition[106]. For the electrolytes investigated in this work, after such cyclic polarizations 
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between 0-1V for ten cycles, the TGC detects no H2 from all SEI-water reactions (Figure 3.6a-h), 

indicating that LiH does not exist in the SEIs.  

 

 

Figure 3. 6 TGC characterization of SEIs formed by plating/stripping Li above 0V.  By 

plating/stripping Li above 0 V, only SEI without metallic Li0 will be formed on the current 

collector. (a) – (g) show the voltage profiles of SEI formation between 0-1V at 0.1 mA for ten 

cycles in (a) 2M LiFSI-DMC, (b) 0.5M LiTFSI-DME/DOL, (c) 1M LiTFSI-DME/DOL, (d) CCE, 

(e) HCE, (f) CCE+Cs+, and (g) CCE+FEC, respectively. After the SEI formations, current 

collectors with SEI on top were performed TGC measurement. (h) shows the TGC results of the 

seven types of electrolytes. No H2 can be detected from any of them, indicating no LiH presence 

in the as-studied systems. 

 

To examine the possible influence from LiH in bulk inactive Li, we changed the titration 

solution from H2O to D2O, which can distinguish LiH and metallic Li0 by producing HD and D2, 

respectively, based on the reactions: 1. LiH + D2O = LiOD + HD↑; 2. 2Li + 2D2O = 2LiOD + D2↑. 

Differentiating HD and D2 was then achieved based on partial pressure analysis by the Residual 

Gas Analyzer (RGA)[107], as demonstrated in Figure 3.7. The base pressure in the vacuum 

chamber is ~8 × 10-8 torr. The gas mixtures were introduced into the chamber using an MKS 

pressure/flow control valve controlled by a computer. The partial pressures of gases in the system 

were measured using an SRS RGA with a detection limit down to 10-11 torr. The turbo pump and 
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backing pump used in this vacuum system were specially designed for handling highly corrosive 

gases. This setup can provide a wide-range partial pressure control (10-11 torr to 10-4 torr) and allow 

for the identification of the different gas molecules including hydrogen isotopes present in the 

system under high vacuum conditions.  Before measuring each sample, the whole system was 

pumped down to high vacuum to ensure the possibility of contamination is minimized. 

 

 

Figure 3. 7 Schematic of the RGA setup for partial pressure analysis to differentiate HD/D2 

isotopes, which are generated from the reaction from LiH and Li metal with D2O, respectively. 

 

Based on the RGA results (Figure 3.8), we confirmed that LiH does not exist in the bulk 

inactive Li generated by the electrolyte systems of low CE. The exclusion of LiH from either SEI 

or bulk inactive Li confirms that the conclusion that is drawn from the TGC analysis should be 

reliable and free of interference from possible LiH species. 
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Figure 3. 8 The study of potential LiH presence in bulk inactive Li. Both metallic Li0 and LiH 

react with H2O and generate H2. To differentiate the two species, we substitute the titration solution 

from H2O to D2O, which reacts with LiH and metallic Li0 to produce HD and D2, respectively, 

based on the reactions: 1. LiH + D2O = LiOD + HD↑; 2. 2Li + 2D2O = 2LiOD + D2↑. Residual 

Gas Analyzer (RGA) can effectively distinguish HD (molecular weight is 3) and D2 (molecular 

weight is 4) by partial pressure analysis. (a) the D2 standard that comes from the reaction between 

~1 mg of commercial pure Li metal and D2O. (b) the HD standard comes from the reaction between 

~1 mg of commercial LiH powder and D2O. The gaseous products analysis from reactions between 

D2O and inactive Li forming in (c) 2M LiFSI-DMC, (d) 0.5M LiTFSI-DME/DOL, (e) 1M LiTFSI-

DME/DOL, and (f) CCE, respectively. Within the detection limit of RGA, the results indicate LiH 

does not exist in the bulk inactive Li in the as-studied electrolyte systems, confirming the accuracy 

on metallic Li0 quantification by TGC. 

 

3.2.5 The source of nitrogen in GC chromatograms 

Note that N2 detected from the GC comes from the GC gas sampling process, instead of 

existing in the reaction container. As schematized in the TGC process in Figure 3.2, the inactive 

Li samples were loaded and sealed into the reaction container in an Ar-filled and N2-free glovebox. 

After being taken out from the glovebox, 0.5 mL of pure H2O was injected into the container and 

reacted with the inactive Li sample. This is an air-free process. A gas-tight syringe was then used 

to take the gas sample for GC injection and measurement. There is a small amount of air left in the 
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needle space of the gas-tight syringe. Moreover, in the GC injection process, when the needle 

breaks the septum, a tiny amount of air might be brought into the GC column. Even though the air 

peak is inevitable for the injection gas sampling method, the inactive Li samples indeed have all 

been reacted in advance and were never exposed to N2.  

To prove that the N2 comes from air during sampling and the presence of air has negligible 

impact on the inactive Li (H2) quantification. First, we measured the gas in the blank container 

without any inactive Li, which has been well sealed in the Ar-filled glovebox. If the N2 comes 

from the reaction container, the N2 peaks intensity will vary proportionally to the injected gas 

amount into the GC. We took different amounts of gas sample from the blank container and 

performed GC measurement. As shown in Figure 3.9a, the N2 peak intensities keep almost 

identical with injection amounts varied from 5-30 µL. The same result was obtained when H2O 

titration on inactive Li was performed. The measured H2 content increase as a function of injected 

gas amount while the N2 content keeps almost constant (Figure 3.9b). Noting that the reaction 

container is sealed in the Ar-filled glovebox, the Ar peak is saturated even only 5 µL of sample 

gas is injected and keeps unchanged in all measurements. The invariability of N2 peaks is not 

because of saturation in the previous measurements since the intensity of the N2 peak increases 

significantly after purposely injecting 10 µL of air (Figure 3.9c). Therefore, we confirmed that the 

N2 comes from the injection sampling process which will not have any chemical reactions with 

the inactive Li samples. Moreover, the H2 quantification is not influenced by the injection sampling 

process. 
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Figure 3. 9 Experimental evidences to show that N2 comes from the sampling process, by using 

different gas injection amounts. (a) Glovebox background gas measurement. The N2 amounts 

keep the same level with variety of injection amounts, indicating the N2 does not exist in the 

container; (b) Container gas measurement after the H2O titration. The N2 amounts still keep 

identical with different injection amounts, whereas the H2 amounts proportionally increase along 

with the increment of injection amounts, indicating that the N2 comes from the injection sampling 

process thus will not have any chemical reactions with the inactive Li samples; the H2 

quantification is not influenced by the injection sampling process; (c) Air sample. 10 µL of air 

was directly injected into the GC in order to demonstrate that the invariant of N2 peaks in Fig. a 

and b are not due to the N2 measurement saturation. 

 

3.2.6 LOD/LOQ analysis of TGC method 

The concentration of hydrogen in the air is 0.000053 %. In order to get the LOD/LOQ 

values, 30 µL of the air sample was injected into GC by the same gas-tight syringe for the hydrogen 

measurement and repeated for 10 times. The results are listed in Table 3.3. Based on the definition 

of LOD/LOQ, the calculated LOD/LOQ from the table is 16.44 ppm and 49.81 ppm, respectively, 

corresponding to 0.28 µg and 0.84 µg of metallic Li0 in the designed TGC system. 
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Table 3. 2 The hydrogen concentration in the blank samples measured for LOD/LOQ analysis. 

Total 10 measurements for the LOD/LOQ calculation. 

 

 

 

3.2.7 Inactive lithium sample preparation (Electrochemical testing) for TGC measurement 

Coulombic efficiency was measured in Li||Cu coin cells: Li metal (1 mm thick, 1/2’), two 

pieces of separators (Celgard) and Cu foil (1/2’) were sandwiched in CR2032 coin cells with a 

spacer and a spring, and crimped inside an Ar-filled glovebox. 50 µL of the electrolyte was added 

in each cell. Composition of HCE is 4M LiFSI (lithium bis(fluoro sulphonyl)imide, battery grade, 

Oakwook Products, Inc.) + 2M LiTFSI (lithium bis(trifluoromethane sulphonyl)imide, battery 

grade, Solvay) in DME (1,2-dimethoxyethane, anhydrous, >99.5%, BASF). CCE consists of 1M 

LiPF6 (lithium hexafluorophosphate, battery grade, BASF) in EC/EMC (ethylene carbonate/ethyl 

methyl carbonate, battery grade, BASF) (3:7 by weight) with 2 wt% of VC (vinylene carbonate, 

battery grade, BASF). CCE + Cs+ contains 50 mM of CsPF6 (cesium hexafluorophosphate, 

Synquest Lab). CCE + FEC contains 10 wt% of FEC (fluoroethylene carbonate, anhydrous, >99%, 

Sigma-Aldrich). DOL (1,3-dioxolane, anhydrous, >99.5%) and LiNO3 were purchased from 

Sigma-Aldrich. Cells for TGC are plating at 0.5 mA cm-2 for 1mAh cm-2 and stripping at various 

rates (0.5, 2.5 and 5 mA cm-2) to 1 V, or unless otherwise specified.  

 

 



78 
 

3.2.8 Inactive lithium sample measurement by TGC method 

Li||Cu cells after stripping at various conditions were disassembled inside Ar-filled 

glovebox (H2O < 0.5 ppm). The Cu foil and separator near the Cu foil side with inactive Li residue 

on top were placed into a 30 mL container without washing. The container was sealed by a rubber 

septum and further capped by a stainless-steel/copper ring for safety concern and to minimize the 

deformation of the rubber septum when gas was generated later. The internal pressure of the sealed 

container was adjusted to one atmosphere by connecting the container and glovebox environment 

(0 mbar) with an open-ended syringe needle. After transferring the sealed container out of the 

glovebox, 0.5 mL of water was injected into the container, allowing complete reaction of inactive 

Li residue with water. Excess amount of H2O has been added to react with all the inactive metallic 

Li0, leading to a complete conversion to the H2 products. The Cu foil became shiny and the 

separator normally turned clean when reactions finished, indicating a complete reaction of the 

inactive Li with H2O. The as-generated gases were then well dispersed and mixed by shaking up 

the container to prevent H2 accumulation on top of the container. Then a gas-tight syringe is used 

to quickly take 30 µL of the well-mixed gas and to inject it into GC for H2 measurement. The GC 

measured H2 areas as a function of cell CE are shown in Figure 3.10a. The conversion between 

mAh and mg of Li is shown in Figure 3.10b. 
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Figure 3. 10 (a) Directly measured H2 area as a function of Coulombic efficiency under variety of 

testing conditions. Every data point is an average of three separate measurements. The small error 

bars indicate the accuracy and reproducibility of the GC measurement. (b) Units conversion 

between mAh and mg of Li 

 

3.2.9 Safety considerations of TGC method 

Li is electrochemically inactive, but chemically hyperactive due to the high surface areas 

which may lead to serious potential safety hazards[108]. The operation of inactive Li 

quantification using the TGC method should be very careful, taking the following aspects into 

consideration: 

1. The proper amount of inactive Li for TGC measurement. The minimum amount of inactive 

metallic Li has been measured is as low as 1 µg (~ 0.04 mAh). The maximum amount of 

Li metal that has been measured in present work is ~ 1.6 mg, corresponding to ~ 6 mAh. It 

is generally preferred to reduce the amount of inactive Li sample, since the GC with an 

advanced H2 detector can be very sensitive (1 ppm). The larger amount of H2 generated, 

the more dangerous could be. 

2. Reaction container must be completely sealed inside the Ar-filled glovebox before taking 

out, to avoid O2 and moisture entering the reaction container. While moisture in air 
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influences the measurement accuracy, O2 may lead to an explosion when a large amount 

of water reacts with inactive Li.  

3. Stainless steel/copper rings are utilized to minimize the rubber septum deformation when 

H2 generated inside the reaction container after water titration, and to prevent potential 

explosion due to the increased internal pressure.  

4. Waste gas in the container after TGC measurement should be disposed in a fume hood to 

avoid regional H2 accumulation which can lead to an explosion (explosive limits of H2 in 

air range from about 18 - 60%, the flammable limits are from 4 - 75%). 

 

Chapter 3 and Chapter 4, in full, is a reprint of the material “Quantifying inactive lithium 

in lithium metal batteries” as it appears in the Nature, Chengcheng Fang*, Jinxing Li*, Minghao 

Zhang, Yihui Zhang, Fan Yang, Jungwoo Z. Lee, Min-Han Lee, Judith Alvarado, Marshall A. 

Schroeder, Yangyuchen Yang, Bingyu Lu, Nicholas Williams, Miguel Ceja, Li Yang, Mei Cai, 

Jing Gu, Kang Xu, Xuefeng Wang and Ying Shirley Meng, 2019, 572, 511-515. The dissertation 

author was the co-primary investigator and author of this paper. The author conducted all the 

experiment and data analysis except for the TEM data collection, and cowrote the paper. 
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Chapter 4 Quantifying Inactive Lithium in Lithium Metal Batteries 

 

4.1 Introduction 

To achieve the energy density of 500 Wh/kg or higher in the next-generation battery 

technologies, Li metal is the ultimate anode of choice, because it is the lightest metal known (0.534 

g cm-3), delivers ultra-high theoretical capacity (3860 mAh g-1), and has the lowest negative 

electrochemical potential (-3.04 V vs. SHE)[9]. Yet, Li metal suffers from dendrite growth and 

low Coulombic efficiency (CE), which have prevented the extensive adoption of Li metal batteries 

(LMBs)[14,15,109]. Since the first demonstration of a Li metal battery in 1976[8], tremendous 

effort has been made in preventing dendritic Li growth and improving CE, including electrolyte 

engineering[23,110–112], interface protection[113] and substrate architecture[114]. While 

densely deposited Li can be achieved without any dendrites during the plating process, the 

stripping process will eventually dominate the CE and thus the reversibility of Li metal anode.  

Here we combine multiscale characterization techniques to achieve this goal. A new 

analytic method, Titration Gas Chromatography (TGC), is established to accurately determine the 

quantity of isolated metallic Li0 content in inactive Li down to microgram (µg). Advanced 

cryogenic FIB-SEM and TEM are used to probe the microstructure and nanostructure of inactive 

Li in both SEI components and the isolated metallic form, providing crucial complimentary 

information on nanoscale. The effectiveness of such multiscale methodology can be fully 

demonstrated when compared with different characterization tools (Table 4.1). Combining the 

advanced electron microscopies with the newly developed TGC allows an unprecedentedly precise 

profiling of inactive Li with atomic level resolution, nanoscale morphology, and most importantly, 
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composition quantification.  Based on these results, we propose the formation mechanism of high-

confidence for inactive Li as well as strategies to mitigate it for high CE. 

 

Table 4. 1 The capability of characterization tools which can be utilized for inactive Li study. The 

green color indicates the methods used in the present study. 
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4.2 Quantifying inactive lithium under variety of conditions by TGC 

We then applied TGC to correlate the origin of inactive Li with the CE in Li||Cu half cells. 

Noting that the CE of Li metal profoundly vary with electrolyte properties and current density, two 

representative electrolytes, the high-concentration electrolyte (HCE, 4M LiFSI + 2M LiTFSI in 

DME)[115] and commercial carbonate electrolyte (CCE, 1M LiPF6 in EC/EMC), were compared 

at three stripping rates (0.5, 2.5 and 5.0 mA cm-2, all plating at 0.5 mA cm-2 for 1 mAh cm-2). In 

addition, we also examined six other electrolytes with a variety of salts, solvents and additives that 

frequently appear in literature, including 2M LiFSI-DMC, 0.5M LiTFSI-DME/DOL, 1M LiTFSI-

DME/DOL, 1M LiTFSI-DME/DOL+2% LiNO3, CCE + Cs+ and CCE + FEC. Figure 4.1a shows 

that their first-cycle average CE exhibit a broad range of values from 17.2% to 97.1%. Their 

representative voltage profiles are shown in Figure 4.2a and b. The total amount of inactive Li is 

equal to the capacity loss between the plating and stripping processes, displaying a linear 

relationship with CE (Figure 4.1d). The content of the metallic Li0 was directly measured by the 

TGC method. Once the amount of unreacted metallic Li0 is determined, the SEI Li+ amount can 

be calculated since total amount of inactive Li (known) = unreacted metallic Li0 (measured) + SEI 

Li+. The average capacity utilization under all conditions were quantified by the TGC, as 

summarized in Figure 4.1b. The reversible capacity indubitably increases with the increment of 

CE. Interestingly, the unreacted metallic Li0 amount increases significantly with the decrease of 

CE, whereas the SEI Li+ amount remains at a constantly low level under all testing conditions. 

Further analyzing the amount of unreacted metallic Li0 as a function of CE (Figure 4.1e), we found 

to our surprise that the amount of unreacted metallic Li0 exhibits a linear relationship with loss of 

CE, and such relationship is almost independent from the testing conditions. This implies that the 
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CE loss is governed by the formation of unreacted metallic Li0. Meanwhile, the SEI Li+ amount 

(Figure 4.1f) as deducted from above remains low and relatively constant under various stripping 

rates. The ratio of SEI Li+ and unreacted metallic Li0 (Li+/Li0) under various conditions (Figure 

4.1c) clearly reveals that the unreacted metallic Li0 dominates the content of inactive Li (Li+/Li0 < 

1) as well as the capacity loss when CE is under ~ 95%. Once the CE is higher than ~ 95%, the 

amount of SEI Li+ becomes dominating. The ratio of unreacted metallic Li0/total inactive Li, and 

SEI Li+/total inactive Li are further shown in Figure 4.2c and d. 

 

 

Figure 4. 1 Quantitative differentiation of inactive Li by the TGC method. (a) Average CE of 

Li||Cu cells under different testing conditions. Seven electrolytes (HCE, CCE, 2M LiFSI-DMC, 

0.5M LiTFSI-DME/DOL, 1M LiTFSI-DME/DOL, CCE-Cs+ and CCE-FEC) and 3 stripping rates 

(0.5, 2.5 and 5.0 mA cm-2, all plating was done at 0.5 mA cm-2 for 1 mAh cm-2) are used.  (b) 

Capacity usage (SEI Li+, unreacted metallic Li0, and reversible Li) analysis under different testing 

conditions by TGC method. (c) Percentage analysis of SEI Li+/unreacted metallic Li0 based on 

TGC quantification results, the blue line indicates exponential fitting. (d) Total capacity loss as a 

function of CE. (e) Unreacted metallic Li0 amount measured by the TGC method as a function of 

CE. (f) Calculated SEI Li+ amount as a function of CE. 
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Figure 4. 2 Supplementary materials for TGC analysis. a, b, Representative voltage profiles of  

Li||Cu cells in (a) HCE and CCE, plating at 0.5 mA cm-2 for 1 mAh cm-2, stripping to 1V at 0.5, 

2.5 and 5.0 mA cm-2; (b) 2M LiFSI-DMC, 0.5M LiTFSI-DME/DOL, 1M LiTFSI-DME/DOL, 1M 

LiTFSI-DME/DOL + 2% LiNO3, CCE + Cs+ and CCE + FEC, plating at 0.5 mA cm-2 for 1 mAh 

cm-2, stripping to 1V at 0.5 mA cm-2. c, The isolated metallic Li0 percentage in total capacity loss 

(Li0/Li0 + Li+). d, SEI Li+ percentage in total capacity loss (Li+/Li0 + Li+). 

 

It is reported that increasing Li deposition capacity improves the first cycle CE[116]. To 

extend this method under different electrochemical conditions, we performed TGC tests on the 

CCE with increased Li plating capacities to 2, 3 and 5 mAh cm-2, respectively. As shown in Figure 

4.3, the TGC results clearly reveal that the SEI Li+ amount increases with the extended deposition 

capacity; the improved CE with increased Li deposition capacity is due to the significantly reduced 
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unreacted metallic Li0. At 3 mAh cm-2, the CE reaches 95.21%, while the ratio of SEI Li+/unreacted 

metallic Li0 measured to be 1.43, which is highly consistent with the above results.  

 

 

Figure 4. 3 The TGC analysis of inactive Li with different Li deposition capacities. (a) the 

voltage profiles of CCE with different deposition capacities at 0.5 mA/cm2 for 1, 2, 3 and 5 

mAh/cm2, respectively. (b) the corresponding TGC analysis of inactive Li with associated capacity 

loss and CE under different deposition capacities. The TGC results clearly show that the SEI Li+ 

amount increases with the extended deposition capacity; we observe that the improved CE with 

increased Li deposition capacity is associated with the significantly reduced inactive metallic Li0.  

Particularly, at the deposition capacity of 3 mAh/cm2, CE reaches 95.21%, while the ratio of SEI 

Li+/unreacted metallic Li0 (Li+/ Li0) measured to be 1.43, which is consistent with the conclusion 

that the SEI Li+ dominates the capacity loss when CE is higher than 95%. 

 

Besides the first cycle, we also investigated the ratio of SEI Li+/unreacted metallic Li0 after 

multiple cycles (2, 5, and 10) till the CE is stabilized around 90% in CCE. As shown in Figure 4.4, 

the Li+/Li0 ratio after 1, 2, 5, and 10 cycles remains 0.27, 0.30, 0.27 and 0.34, respectively, 

indicating the main capacity loss is from the inactive metallic Li0. The TGC results also reveal that 

the unreacted metallic Li0 amount accumulates during extended cycles, indicating the continuous 

consumption of active Li in LMBs. These experiments, with varying electrolytes, additives, 

deposition capacities and cycles, all validate the TGC method as a universally reliable tool in 

studying the inactive Li. 
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Figure 4. 4 The TGC analysis of inactive Li after multi cycles. (a) the cycling performance. (b) 

TGC analysis showing Li0 and Li+ contents with associated capacity loss after 1, 2, 5 and 10 cycles, 

respectively. The results are tested from the CCE, at 0.5 mA/cm2 for 1 mAh/cm2. The percentage 

of SEI Li+ is 21.5%, 22.8%, 21.1% and 25.9% after 1, 2, 5 and 10 cycles, respectively. This 

suggests that even though the SEI percentage increased slightly after multiple cycles, the main 

capacity loss is still from the inactive metallic Li0. The TGC results also reveal that the inactive Li 

is accumulating during extended cycles, indicating the continuous consumption of active Li in 

LMBs. 
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4.3 XPS analysis of inactive lithium under various conditions 

4.3.1 Method 

After a plating/stripping process, cells were disassembled in an Ar-filled glovebox with 

H2O < 0.5 ppm. Cu foils with inactive Li residue were gently and thoroughly rinsed by DME (for 

HCE) and DMC (for CCE) to remove residual surface Li salts. The rinsed electrodes were sealed 

in an air-tight Dog-Bone type container and transferred into the glovebox that connected to XPS 

chamber. XPS was performed using a Kratos AXIS Supra with the Al anode source operated at 15 

kV. The chamber pressure was < 10-8 torr during all measurements. All XPS measurements were 

collected with a 300 µm by 700 µm spot size with a charger neutralizer during acquisition. Survey 

scans were collected with a 1.0 eV step size followed by high-resolution scans collected with a 

step size of 0.05 eV. Fittings of the XPS spectra were performed with CasaXPS software (version 

2.3.15, Casa Software, Ltd.) to estimate the atomic compositions and chemical species. All species 

(Li 1s, F 1s, O 1s, and C 1s) were fitted using a Shirley type background. High-resolution spectra 

were calibrated using the C1s peak at 284.6 eV. The peak positions and areas were optimized by 

a Levenberg-Marquardt least-squares algorithm using 70% Gaussian and 30% Lorentzian line 

shapes. Quantification was performed based on Relative Sensitivity Factors (RSF). The curve fit 

for the core peaks was obtained using a minimum number of components to fit the experimental 

curves. 

 

4.3.2 XPS results discussion 

Further examining the SEI components in HCE and CCE by XPS, we found that stripping 

rates have negligible impact on the relative contributions from SEI components, as specified in 
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Figure 4.5. The TGC quantification analysis and XPS results firmly establish that the contribution 

from the SEI Li+ to the global content of  inactive Li is not as significant as commonly believed in 

previous studies[11,110,117].  

 

 

Figure 4. 5 XPS analysis of inactive Li SEI components formed in HCE and CCE under 

variety of stripping rates. a, inactive Li formed in HCE. b, inactive Li formed in CCE. The 

stripping rates show negligible impact on SEI components and contents in both electrolytes. 
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4.4 Microstructure of Inactive Lithium by Cryogenic Focused Ion Beam Scanning Electron 

Microscopy (cryo-FIB-SEM) 

4.4.1 Method 

The inactive Li samples on Cu foil were disassembled and washed with anhydrous DME 

(for HCE) or DMC (for CCE) in the Ar-filled glovebox. The samples were mounted on the SEM 

sample holder in the glovebox then transferred to a FEI Helios NanoLab Dualbeam. Platinum (Pt) 

was deposited for surface protection from the ion beam. 100 nm of Pt was deposited using the 

electron beam at 5 kV, 0.8 nA; 300 nm of Pt was deposited using the ion beam at 30 kV, 0.1 nA. 

The stage was cooled with liquid nitrogen to ≤-180 °C. Sample cross-sections were exposed using 

1 nA ion beam current and 100 ns dwell time and cleaned twice at 0.5 nA and 0.1 nA, respectively. 

SEM images were taken with an ETD detector at 5 kV. 

 

4.4.2 Microstructure of deposited lithium and Inactive Lithium formed under different 

conditions 

In order to elucidate the formation mechanism of inactive Li, cryogenic focused ion beam-

scanning electron microscopy (cryo-FIB-SEM) is used to explore the microstructures of inactive 

Li. HCE and CCE samples under different stripping rates are chosen for the morphological study. 

Cryogenic protection is critical here because the highly reactive Li metal is not only sensitive to 

the electron beam, but also is apt to react with the FIB incident Ga ion beam to form a LixGay alloy 

at room temperature[118]. Completely different morphologies are generated by variations in 

stripping rates even though starting from the same chunky morphology after plating at 0.5 mA cm-

2 (Figure 4.6a-c). As the stripping rate increases, the morphology of inactive Li in HCE evolves 



91 
 

from uniform sheets to local clusters (Figure 4.7a-c) with a thickness increased from 500 nm to 2 

μm (Figure 4.7d-f). For the CCE, the deposited whisker-like Li (Figure 4.7d-f) becomes thinner 

after stripping (Figure 4.7g-i), and turns thicker in cross-section along with the increased stripping 

rates (Figure 4.7j-l), corresponding to the increased loss of CE at high rates. It is worth noting that 

these residues exhibit poor connection to the current collector, indicating the loss of electronic 

conductive pathways.   

 

 

Figure 4. 6 Microstructure of electrochemically depo sited Li in both HCE and CCE under 0.5 mA 

cm-2 to areal capacity of 0.5 mAh cm-2, by Cryo-FIB-SEM. (a, b, and c) show the top view, cross-

section and schematic in HCE, respectively. The deposited Li in HCE are large particles with sizes 

of several microns and reduced porosity. (d, e, and f) show the top view, cross-section and 

schematic in CCE, respectively. The deposited Li shows a mossy-like morphology with high 

porosity. 
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Figure 4. 7 Microstructures of inactive Li generated in HCE (a-f) and CCE (g-l) imaged by 

Cryo-FIB-SEM. (a-c) and (g-i) are top view of the inactive Li at 52o tilted stage. (d-f) and (j-l) 

are cross-sections obtained by cryo-FIB. Each column represents a stripping rate. (a, d, g and j) 

are at 0.5 mA cm-2. (b, e, h and k) are at 2.5 mA cm-2. (c, f, i and l) are at 5.0 mA cm-2. 
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4.5 Nanostructure of inactive lithium by cryogenic transmission electron microscopy 

4.5.1 Method 

The Cryo-TEM sample for HCE was directly deposited and stripped on a lacey carbon grid 

in the Li||Cu half cell. While the sample for CCE was prepared by peeling the inactive Li from Cu 

foil cycled in the half cell onto the same type TEM grid. Both half cells were tested at current 

density of 0.5 mA cm-2 for plating and stripping Li for areal capacity of 1 mAh cm-2. Both TEM 

samples were slightly rinsed with DME/DMC to remove trace Li salt in Ar-filled the glovebox. 

Once dry, the samples were sealed in airtight bags and plunged directly into a bath of liquid 

nitrogen. The airtight bags were then cut and the TEM grids were immersed in liquid nitrogen 

immediately. Then the grids were mounted onto a TEM cryo-holder (Gatan) via a cryo-transfer 

station. In short, the whole TEM sample preparation and transfer process prevents any contact of 

Li metal with the air at room temperature. TEM characterizations were carried out on JEOL JEM-

ARM300CF at 300 kV and JEM-2100F at 200 kV. HRTEM images were taken at a magnification 

of 500 kx with Gatan OneView Camera (full 4K × 4K resolution) when the temperature of samples 

reached about 100 K. FFT pattern and Inverse FFT image after mask filtering were analyzed using 

DigitalMicrograph software. 

 

4.5.2 Nanostructure of inactive lithium formed under different conditions 

We further used cryo-TEM to investigate the nanostructure of the inactive Li in HCE and 

CCE after stripping at 0.5 mA cm-2. Sheet-like inactive Li appears in the HCE sample (Figure 

4.8a), while inactive Li in the CCE remains a whisker-like morphology (Figure 4.8e). Based on 

the (110) lattice plane distance of bcc Li, the region that contains crystalline metallic Li0 is 
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highlighted in green in the high-resolution TEM (HRTEM) images for both electrolytes (Figure 

4.8b, f). Compared with the inactive Li obtained from CCE, a much smaller area of metallic Li0 

component is observed in HCE. This indicates that most deposited metallic Li0 in HCE has been 

successfully stripped, corresponding to the high CE. Whisker-like unreacted metallic Li0 as large 

as ~80 nm in length remains in the CCE sample and is well isolated by the surrounding SEI. The 

SEI components were determined by matching the lattice spacing in HRTEM images with their 

fast Fourier transform (FFT) patterns (Figure 4.8c, g). For the first time, the SEI components from 

more than 50 different sample positions is analyzed and provided in Figure 4.9 for better statistics. 

Consistent with the XPS results (Figure 4.5), Li2CO3 and Li2O constitute the major part of SEI, 

which also contains LiF as well as other amorphous organic species for both electrolytes. The 

above observations from Cryo-TEM are summarized in the schematic plot (Figure 4.8d, h), which 

reveal the form of inactive Li with two different morphologies at nanoscale.  
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Figure 4. 8Nanostructures of inactive Li generated in HCE (a-d) and CCE (e-h) by Cryo-

TEM. a, e, inactive Li morphology at low magnifications for both electrolytes. b, f, HRTEM 

shows a different amount of metallic Li0 is wrapped by SEI in the two types of electrolytes. The 

highlighted metallic Li0 region in green is identified through FFT-mask filtering-inverse FFT-

image overlay process. c, g, FFT patterns of corresponding HRTEM indicate the SEI component 

which contains crystalline Li2CO3, Li2O, and LiF. d, h, Schematic of inactive Li nanostructure in 

both electrolytes. Small area of metallic Li0 is embedded in a sheet-like SEI layer for HCE, while 

a large bulk of metallic Li0 is isolated in whisker-like SEI layer in CCE. 

 

 

Figure 4. 9 a. Statistics of inactive Li SEI components formed in HCE from 50 different sample 

positions by cryo-TEM. b. Statistics of inactive Li SEI components formed in CCE from 50 

different sample positions by cryo-TEM. 
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4.6 The formation mechanism of inactive lithium 

Correlating the inactive metallic Li0 content with the micro and nanostructures of inactive 

Li formed under different conditions, we propose an inactive Li formation mechanism as well as 

the stripping mechanism of Li metal. Two processes are involved in the stripping (Figure 4.10): 1) 

Li+ dissolution. Under the electric field, metallic Li0 is oxidized to Li+, which diffuses through the 

SEI layers and dissolves into the electrolyte. 2) SEI collapse. When the Li is removed, the SEI 

simultaneously shrinks and collapses towards the current collector. During these two dynamic 

processes, we emphasize an ignored but crucial aspect, the structural connection, which is defined 

as the capability of the active Li to maintain an electronic conductive network. The cryo-FIB-SEM 

and cryo-TEM images show that inactive Li0 either directly disconnected from the current collector 

or encapsulated by the insulating SEI, leading to the loss of structural c onnection. Obviously, for 

a Li deposit with whisker morphology and large tortuosity (Figure 4.11a, as from CCE), both 

manners of losing structural connection can easily occur due to the undesired microstructure, 

leading to poor structural connection and more unreacted metallic Li0 remaining during the 

stripping process. In contrast, the dense Li with chunky morphology and low tortuosity (Figure 

4.11b, as from HCE) has bulk integrity to maintain a structural connection and an intimate contact 

with the current collector, resulting in reduced presence of unreacted metallic Li0 and high CE. 

This is further evidenced by an advanced novel electrolyte with columnar microstructure and 

minimum tortuosity which can deliver a first cycle CE as high as 96.2% (Figure 4.12a, b).  
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Figure 4. 10 Schematic of Li stripping process. a. Li ion dissolution. b. SEI layer collapse 

towards the current collector. 
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Figure 4. 11 Schematic of inactive Li formation mechanism in different electrolytes based on TGC 

quantification, Cryo-FIB-SEM and Cryo-TEM observation. a, Li deposits with whisker 

morphology and large tortuosity are more likely to lose electronic connection and maintain poor 

structural connection, leaving large amount of unreacted metallic Li0 trapped in SEI. b, Li deposits 

with large granular size and less tortuosity tend to maintain a good structural electronic connection, 

only bits of metallic Li0 are stuck in tortuous SEI edges. c, An ideal Li deposit should have a 

columnar microstructure with a large granular size and minimum tortuosity and homogeneous 

distribution of SEI components, facilitating a complete dissolution of metallic Li0. d, A general 

correlation of Li deposits morphology, CE, and the ratio of SEI Li+/unreacted metallic Li0 
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4.7 Mitigation strategies of inactive lithium formation 

Based on the above observation and discussion, we propose the following strategies that 

could improve CE. An ideal architecture of deposited Li would promote a good structural 

connection and mitigate the inactive Li formation, especially the formation of unreacted metallic 

Li0. The ideal architecture includes 1) The Li deposits should retain a columnar microstructure 

with a large granular size and minimum tortuosity to minimize the unreacted metallic Li0 residue 

(Figure 4.11c, d); 2) The SEI should be both chemically and spatially homogeneous so that uniform 

Li+ dissolution occurs; the SEI should be mechanically elastic enough to accommodate the volume 

change; the SEI could be refilled during extended cycles, as schematized in Figure 4.12g. Using 

advanced electrolytes and artificial SEI may help to meet these requirements, while three-

dimensional (3D) hosts that maintain electronic pathway and low tortuosity can contribute to 

constructing a durable structural connection and guiding the Li plating and stripping. To testify 

this hypothesis, we compared the 2D Cu foil and 3D Cu foam as the current collectors (Figure 

4.12c, d). The initial CE of 2D Cu foil and 3D Cu foam are 82% and 90%, respectively (Figure 

4.12e). The increased CE in the latter is attributed to the reduced amount of the unreacted metallic 

Li0 (Figure 4.12f), despite that SEI Li+ amount increases from 21.5% to 62.7% due to the higher 

surface area of 3D Cu foam. Therefore, while the 3D current collector helps maintaining a good 

electronic conductive network, it is necessary to control the surface properties of 3D current 

collector to minimize the SEI formation. The structural connection can also be further enforced by 

applying proper external pressure. Slight stacking pressure has been known to be helpful in 

improving cycling performance significantly[119,120]. In our proposed model, we believe that 

pressure promotes the structure collapse towards the current collector, thus leads to a better 
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structural connection which mitigates the generation of unreacted metallic Li0. We found that the 

critical pressure in maintaining good structural connection to be as small as ~ 5 psi, which should 

not damage any SEI (Figure 4.12h). Fast stripping rate could accelerate the Li+ dissolution but may 

be destructive to structural connection, because of the fast dynamic that Li at the tip of column or 

whisks could fail to keep pace with. Overall, the tools established here can be universally extended 

to examine various battery chemistries under different conditions towards a better battery that is 

energy-dense and safe. 
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Figure 4. 12 Strategies that may mitigate inactive Li formation. a. The cross-section 

morphology of Li deposits generated in an advanced electrolyte developed by General Motors 

(GM), showing a unique columnar structure. b. The GM electrolyte delivers a first cycle CE of 

96.2%, plating at 0.5 mA cm-2 for 1 mAh cm-2, stripping at 0.5 mA cm-2 to 1 V. c-f, 3D current 

collector. c, SEM image of Li deposits on Cu foil. d, SEM image of Li deposits on Cu foam. Both 

were deposited at 0.5 mA cm-2 for 1 mAh cm-2 in CCE. e. Representative first cycle voltage profiles 

of Cu foil and Cu foam, plating at 0.5 mA cm-2 for 1 mAh cm-2, stripping at 0.5 mA cm-2 to 1 V in 

CCE. f. TGC quantification of inactive Li for Cu foil and Cu foam samples. g. Schematic of an 

ideal artificial SEI design. The polymer based artificial SEI should be chemically stable against Li 

metal and mechanically elastic enough to accommodate the volume and shape change. Meanwhile, 

the edges of the artificial SEI should be fixed to the Li metal or the current collector, avoiding 

electrolyte to diffuse and contact with fresh Li metal. The flexible polymer SEI thus can 

accommodate the expansion and shrinkage during repeated Li plating and stripping. In this way, 

no Li will be consumed to form SEI during extended cycles and we can thus realize the anode-free 

Li metal batteries. h. Influence of pressure on Li plating/stripping. The results are from the HCE, 

at 0.5 mA cm-2 for 1 mAh cm-2, using a load cell. At each condition, two load cells were measured. 

The error bars indicate the standard deviation. 
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4.8 Conclusion 

In summary, this work has established a novel quantitative methodology to accurately 

differentiate and quantify the inactive Li on multi-scales. The TGC results reveal that the amount 

of unreacted Li0 governs the loss of CE, as indicated by their linear relationship. This discovery 

unequivocally settles the long-lasting debates over the role of the two forms (SEI Li+ and metallic 

Li0) of inactive Li. The morphological study by Cryo-FIB-SEM shows that the microstructures, 

such as particle sizes and tortuosity, of the deposited Li play key roles in maintaining the structural 

electronic connection. Cryo-TEM confirmed that the isolated particles of Li0 is indeed trapped in 

the electronically insulating SEI. Correlating these observations, we proposed the formation 

mechanism of inactive Li, revealing that the true underlying cause of low CE in LMBs is due to 

large amount of metallic Li0 becoming trapped in SEI with tortuous microstructures. We also 

offered strategies to mitigate inactive Li formation and thus significantly improve CE. With an 

ideal columnar microstructure, it could be possible that the capacity loss will only come from the 

minor SEI formation in the initial cycle and the anode-free battery can thus be realized. The 

versatile characterization tools established here can be further extended to investigate inactive Li 

properties under different conditions, such as current densities, temperatures as well as electrolyte 

compositions, and serve as a standard methodology to evaluate the strategies that improve the 

performance of Li metal. We anticipate this novel methodology to be universally adopted for 

systematic study of all current and future battery chemistries.  

 

Chapter 3 and Chapter 4, in full, is a reprint of the material “Quantifying inactive lithium 

in lithium metal batteries” as it appears in the Nature, Chengcheng Fang*, Jinxing Li*, Minghao 

Zhang, Yihui Zhang, Fan Yang, Jungwoo Z. Lee, Min-Han Lee, Judith Alvarado, Marshall A. 

Schroeder, Yangyuchen Yang, Bingyu Lu, Nicholas Williams, Miguel Ceja, Li Yang, Mei Cai, 
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Jing Gu, Kang Xu, Xuefeng Wang and Ying Shirley Meng, 2019, 572, 511-515. The dissertation 

author was the co-primary investigator and author of this paper. The author conducted all the 

experiment and data analysis except for the TEM data collection, and cowrote the paper. 
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Chapter 5 Conclusion and Future Perspectives 

 

5.1 Main challenges with Li metal: dendrite formation or low Coulombic efficiency? 

It is widely accepted that Li dendrite formation and low CE are two primary obstacles 

hindering Li metal batteries [109]. In addition, other challenges associated with Li metal anodes 

include volume expansion, poor cycle life, capacity fading, increased overpotential, and potential 

safety hazards. It is commonly thought that Li dendrites can mechanically pierce the separator, 

causing a short in the cell that potentially results in thermal runaway and explosion[9]. Figure 5.1a 

shows a Li dendrite model that has been widely spread to illustrate the potential dangers of Li 

dendrites. This dendritic morphology was originally observed in a beaker cell via optical 

microscopy [109,121,122]. However, in real coin cells and pouch cells, this morphology has rarely 

been observed or reported. Instead, whisker-like Li deposits are commonly observed in 

commercial carbonate-based electrolytes and even solid-state batteries (Figure 5.1b), due to the 

heterogeneous nature of SEI layers, ion concentration and local current density[123]. These Li 

whiskers interweave parallel to the separator (rather than perpendicular); only a perpendicular 

whisker can potentially penetrate the separator and cause a cell short. Moreover, chunky Li 

deposits with large granular size (Figure 5.1c) have been observed in many of recently developed 

advanced electrolytes. Based on these findings, it is misleading to continuously ascribe the major 

problem associated with Li metal anodes to dendritic growth and its resultant internal short 

circuit/thermal runaway. Lu and colleagues have also refuted the dendrite-penetration-related 

failure mechanism by SEM analysis of an Li anode cross-section after 100 cycles [100]. 

Undoubtedly, the Li dendrites, or more precisely Li whiskers, play a critical role in affecting Li 
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metal battery performance. However, it is likely via other avenues, including increasing surface 

area and causing large volume expansion, rather than directly causing a short circuit. 

We believe that the primary issue with Li metal stems from the low CE, which directly 

reduces the battery cycle life. As cycling proceeds, both fresh Li metal and electrolyte are 

consumed continuously forming inactive Li (provided that the cycle CE is <100%). Thus, cycle 

life and stability in a Li metal cells are directly proportional to the amount of excess Li and 

electrolyte [124]. However, the CE of Li metal in conventional carbonate electrolytes is <90%, 

indicating that most Li metal cells fail via consumption of active Li or depletion of electrolyte 

(rather than short circuiting caused by Li whiskers). Even for advanced electrolytes that enable 

highly efficient Li plating/stripping with CE ~ 99%, the 1% inefficiency remains problematic. To 

achieve a desired cycle life, excess amounts of fresh Li and electrolyte are needed, rendering it 

difficult to further improve the cell-level energy density. Thus, it is becoming inescapable to 

improve the CE of Li metal to extend the cycle life of the Li metal batteries. 

 

 

Figure 5. 1 The morphologies of electrochemically deposited Li under different conditions. 

(a) the famous optical microscope image representing Li dendrites; (b) whisker-like Li deposited 

in commercial carbonate electrolyte (1M LiPF6 in EC/EMC, 3:7 with 2% of VC, 0.5 mA/cm2, 1 

mAh/cm2); (c) chunky Li with a large granular size formed in high concentration ether-based 

electrolyte (4M LiFSI in DME, 0.5 mA/cm2, 1 mAh/cm2) 
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5.2 Inactive Li Formation Causes Low Coulombic efficiency: SEI Li+ or Unreacted metallic 

Li? 

Low Li-metal CE stems from the loss of active Li as it forms the SEI and unreacted metallic 

Li, which together comprise inactive Li (also known as “dead” Li). SEI formation is a result of the 

(electro)chemical reaction between highly reactive Li metal and the electrolyte, whereas unreacted 

metallic Li is isolated from the electronically conductive network during stripping by the insulating 

SEI, thus becoming inactive [28,125,126].  

The importance of the SEI has been reviewed exhaustively [16,41,103]; however, 

quantitative characterization of SEI properties remains elusive, including: chemical compositions, 

nanostructure, and mechanical properties. This is partly due to the brittle and heterogeneous nature 

of the SEI. It is generally believed that dramatic volume changes yield fractures in the SEI during 

Li stripping/plating.[15] This fracturing results in continuous SEI formation that consumes both 

the active Li and electrolyte. This process is further accelerated by growth of porous Li whiskers. 

With this in mind, many researchers attribute the continuous formation of SEI as the primary 

reason for capacity loss and low CE, without further quantitative verification [48]. However, it 

was recently reported that this picture is not correct following quantification of both the SEI Li+ 

and unreacted metallic Li after stripping via the recently developed Titration Gas Chromatography 

(TGC) [127]. Importantly, TCG results reveal that the capacity loss of Li metal anodes is primarily 

dominated by unreacted metallic Li that is trapped by the insulating SEI. The overall SEI Li+ 

amount in the inactive Li remains almost identical and at a relatively low amount under different 

testing conditions. This suggests that the main loss of CE in Li metal batteries does not come from 

SEI formation but rather from the unreacted metallic Li. The capacity loss from forming SEI has 
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been over-blamed for decades. Although the amount is low, we still want to emphasize that the 

SEI cannot been overlooked since its chemical and mechanical properties directly dictate the 

surface properties of the EDLi, directly affecting the dynamic Li plating and stripping process. 

Much work is still needed to correlate the SEI properties to the electrochemical behavior and 

performance of Li metal anodes.  
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5.3 Strategies for improving Coulombic efficiency 

Many strategies have been proposed to improve CE, including: electrolyte engineering 

[112,128,129], use of a 3D host [130,131], separator modification [132,133], and artificial SEI 

engineering [113,134], for example, atomic/molecular layer deposition has been proved an 

effective approach to enhance the CE and decrease the formation of "dead” Li [135–137]. Among 

these strategies, the most effective and promising is developing new electrolytes that enable both 

high efficiency Li-metal and stable high-voltage cathode operation. Dense Li deposition with a 

CE > 99% is readily obtained [18,19,21,22], however, a 99.97% CE is required for a commercially 

viable Li metal anode that must undergo 1000 cycles [2].  

To close the gap of <1% CE loss per cycle further, we must fully understand the growth 

and failure mechanism of Li metal in both liquid and solid-state electrolytes by employing state-

of-the-art characterization tools. For example, operando optical microscopy [27] and in-situ 

transmission electron microscopy (TEM) [36] were combined to probe the dynamic growth of Li 

dendrites on a wide range of length and time scales. In particular, Cryo-EM eliminates detrimental 

beam damage on fragile Li metal and affords nanostructure visualization. Unexpectedly, 

amorphous Li has been detected at the early stage of Li deposition [25]. Aside from microscopy, 

other techniques are also needed to quantitatively probe the structure and amount of Li metal/SEI, 

such as TGC [127]. Significant advances in characterization are helping researchers get 

unprecedentedly close to truly understanding the Li metal failure mechanism and rationally 

overcoming the previously stated obstacles for Li metal.   

Recently, Meng and colleagues [127] used cryo-TEM to observe the nanostructure of 

inactive Li, revealing that unreacted metallic Li is trapped by the SEI. Further, it was shown that 
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the unreacted metallic Li amount is closely correlated with the Li-deposit microstructure. A large 

quantity of unreacted metallic Li is easily trapped in tortuous matrix of the whisker-like Li, 

resulting in a low CE. In contrast, a smaller quantity of unreacted metallic Li is present following 

stripping large chunky Li deposits with lower porosity. Consequently, we assert that whisker-like 

Li is an undesired microstructure that accelerates formation of inactive metallic Li as well as 

infinite volume expansion thereby yielding low CE (rather than assigning potential safety concerns 

to Li-dendrite formation). Therefore, we propose that chunky Li deposits are the preferred 

microstructure for maintaining a suitable electronic connection between deposited Li and the 

current collector in a limited volume space. In addition, this preferred morphology implies that 

significantly less unreacted metallic Li will be trapped in the SEI, thereby affording an improved 

CE. Thus, we anticipate that strategies to bias Li deposits to forming a columnar chunk 

morphology will be effective in further improving CE and confining the volume expansion. Figure 

5.2 summarizes the cause and solutions for Li metal problems.  
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Figure 5. 2 The cause and solution for the Li metal problems. The continuous formation of 

inactive Li is the direct cause of low CE, safety hazards and cell expansion in Li metal batteries. 

Li whiskers with large tortuosity and heterogeneous SEI will facilitate the inactive Li formation 

and cause the series of problems; whereas if the deposited Li possesses a chunky morphology with 

minimal tortuosity and homogeneous SEI, the inactive Li formation will be significantly reduced, 

resulting in high CE. To do so, advanced electrolyte engineering will be primary method, with the 

assistance of artificial SEI and 3D current collector. 
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5.4 Concluding Remarks and Future Perspectives 

We demonstrate that the major problem of Li metal is the low CE rather than the Li 

dendrites. Most Li metal cells fail due to the consumption of active Li or depletion of electrolytes, 

rather than the short circuit caused by the Li dendrite/whisker. The loss of CE is mostly dominated 

by the formation of unreacted metallic Li rather than the SEI, which is related to the microstructure 

of Li deposits.  

In the future, research effort should be devoted on how to reduce the amount of unreacted 

metallic Li by tuning the nanostructure and microstructure of deposited Li during both the plating 

and stripping processes. An ideal Li deposit should have a columnar morphology; the SEI layer 

should be homogeneous in components and their distribution, possess proper mechanical strength 

and elasticity; the deposited Li volume should be close to the theoretic number. Advancing 

electrolytes will undoubtably be the most effective solution to generate these large Li chunks with 

minimum tortuosity. A combination of the 3D substrate which helps maintain good electronic 

conductive pathways and an artificial SEI with all the desired properties may also be required to 

enhance the structural connection for electrons and ion transfer through the SEI, which together 

could potentially realize the CE goal of more than 99.97%. 

To engineeringly carry out these strategies, a thorough understanding of SEI properties is 

the key. Thanks to cryo-EMs, we are now able to correlate the nanostructure of Li metal with the 

electrochemical performance at different conditions. Operando/in-situ cryo-EM should be soon 

established to probe the dynamic processes of Li metal and its SEI during plating and stripping. 

Although the SEI amount is low, it plays an important role on altering and affecting the Li behavior, 

by which ways we should figure out in the future. Some interesting questions are remained, for 
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example, what is the ideal structure of SEI and how to achieve it? How do Li ions diffuse through 

the SEI? Will the Li refill the as-formed SEI shells in subsequent cycles or not? How to achieve 

ideal columnar Li deposits? Answering these questions are of vital importance towards rationally 

eliminating the 1% of CE loss to ultimately make the Li metal batteries commercially available.  

Lastly, we advocate the field to follow standardized testing protocols for more effective 

knowledge transfer. As we mentioned before, the cycle life and cycling stability in a Li metal cell 

are directly proportional to the excess amount of Li and of the electrolyte. Many reported cycling 

data are based on a large excess of electrolyte and effectively an infinite excess amount of Li metal 

in coin cells; these methodologies do not accurately reflect the true performances of the reported 

strategies. Battery research and development has reached a point that scientific research advances 

are evaluated and assessed by how rapidly and reproducibly they can be deployed in a 

commercially relevant design. This extremely demanding trend itself is a double-edged sword as 

it might constrain the creativity of the scientists, but if successful it will accelerate the realization 

of next generation batteries. When developing strategies of improving the CE in Li metal anode, 

we advocate researchers rise up to the tough technical challenges, apply and report strict standards, 

including high mass loading of active cathode materials (≥ 4 mAh/cm2), proper current density (> 

0.5 mA/cm2), lean electrolyte (≤ 3 g/Ah), and a limited excess amount of Li metal (<50 µm 

thickness), to evaluate if these strategies are truly effective for a practical rechargeable Li metal 

battery.  

 

Chapter 5, in full, is a reprint of the material “Key Issues Hindering a Practical Lithium 

Metal Battery” as it appears in the Trends in Chemistry, Chengcheng Fang, Xuefeng Wang, Ying 

Shirley Meng, 2019, 1, 152-158. The dissertation author was the primary investigator and author 

of this paper. The author wrote the paper.  
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