Self-standing porous LiMn$_2$O$_4$ nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries

Hui Xia, Qiuying Xia, Binghui Lin, Junwu Zhu, JoonKyo Seo, Ying Shirley Meng

PII: S2211-2855(16)00042-2
DOI: http://dx.doi.org/10.1016/j.nanoen.2016.01.022
Reference: NANOEN1109

To appear in: Nano Energy

Received date: 22 September 2015
Revised date: 26 November 2015
Accepted date: 26 January 2016

Cite this article as: Hui Xia, Qiuying Xia, Binghui Lin, Junwu Zhu, JoonKyo Seo, and Ying Shirley Meng, Self-standing porous LiMn$_2$O$_4$ nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries, Nano Energy, http://dx.doi.org/10.1016/j.nanoen.2016.01.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Self-standing porous LiMn$_2$O$_4$ nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries

Hui Xiaa,b, Qiuying Xiaa,b, Binghui Lina,b, Junwu Zhuc, JoonKyo Seod, Ying Shirley Mengd*

aSchool of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

bHerbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China

cKey Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China.

dDepartment of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA

* Corresponding author, e-mail: xiahui@njust.edu.cn Tel: (86) 25 84303408 , Fax: (86) 25 84303408

* Corresponding author, e-mail: jwzhu@njust.edu.cn

* Corresponding author, e-mail: shmeng@ucsd.edu
Abstract

Three-dimensional self-supported cathode nanoarchitectures are the key to develop high-performance thin film lithium-ion microbatteries and flexible lithium-ion batteries. In this work, we have developed a facile “hydrothermal lithiation” strategy to prepare vertically aligned porous LiMn$_2$O$_4$ nanowall arrays, comprising highly crystallized spinel nanoparticles, on various conductive substrates without high temperature treatment. The “hydrothermal lithiation” can effectively convert Mn$_3$O$_4$ spinel nanowall arrays into LiMn$_2$O$_4$ spinel nanowall arrays without severe morphology change. The binder-free three-dimensional porous LiMn$_2$O$_4$ nanowall arrays exhibit high specific reversible capacity up to 131 mAh g$^{-1}$ (or 0.29 mAh cm$^{-2}$) as well as outstanding cycling stability and rate capability, making them promising as cathodes for both three-dimensional thin film lithium-ion microbatteries and flexible lithium-ion batteries. A flexible lithium-ion full cell is demonstrated by using LiMn$_2$O$_4$ nanowall arrays on carbon cloth as the cathode and Li$_4$Ti$_5$O$_{12}$ nanowall arrays on carbon cloth as the anode. The flexible Li$_4$Ti$_5$O$_{12}$/LiMn$_2$O$_4$ full cell device, employing three-dimensional nanoarchitectures for both cathode and anode, can deliver specific reversible capacities of 124.8 mAh g$^{-1}$ (based on the weight of cathode material) at 1 C and 92.1 mAh g$^{-1}$ at 20 C with excellent cycle performance. Our work demonstrates the great potential for flexible energy storage technology using low cost fabrication method of nanoarchitectures.

Keywords: 3D microbatteries, flexible lithium-ion batteries, cathode, self-standing, porous
1. Introduction

With fast development of microelectronic devices and flexible electronic devices, two emerging battery technologies of thin-film lithium-ion microbatteries and flexible lithium-ion batteries have attracted remarkable attention due to the potential enormous market in the future [1-3]. While the microelectronic industry is developing at a rapid pace with smaller and smaller devices, the implementation of microelectro-mechanical systems (MEMS) on the market heavily depends on the availability of on-board power sources. However, traditional rechargeable batteries based on liquid electrolyte are not applicable due to the restrictions for on-chip design, size, and inherent risk of leakage, which give rise to the development of all-solid-state thin film lithium-ion microbattery technology [4,5]. As more energy is required in microelectronic devices, two-dimensional (2D) thin film microbatteries are no longer the ideal battery design because the limited footprint area results in a compromise between energy density and power density for the built-in power source. A move to all-solid-state three-dimensional (3D) architectures has been proposed as a promising approach to tackle this challenge and achieve both high energy and power densities within the footprint area [6,7]. In the mean time, the flexible electronics is emerging as a successful technology for the next generation flexible optoelectronic devices in various applications such as rollup displays, smart electronics, and wearable devices, which find flexible lithium-ion batteries as the reliable power supply [8]. Flexible lithium-ion batteries adopt the same core battery components and working principles with the conventional lithium-ion batteries, but require high flexibility and mechanical strength for both anode and cathode [9-11].

3D microbatteries generally require the fabrication of 3D nanoarchitected electrodes with large capacity at high charge/discharge rates and long-term cycling capability [12]. Without using
binders or conductive additives, the direct fabrication of nanoarchitectures for the electrode materials on conductive substrates represents a new class of electrodes: 3D self-supported electrodes [13,14]. Except for the key component for constructing 3D microbatteries, the 3D self-supported electrodes using flexible substrates, such as metal foil and carbon cloth, can be ideal electrodes for flexible lithium-ion batteries [15-17]. Active research efforts have been made to the synthesis and characterization of various 3D self-supported electrodes on different conductive substrates [18,19]. Most of the previous works, however, focused on the preparation of 3D self-supported nanoarchitectures for anode materials such as Si [20], Co$_3$O$_4$ [21], and TiO$_2$ [22,23], while very limited work has been reported on the 3D self-supported nanoarchitectures for cathode materials [24,25]. The difficulty lies in the fact that the synthesis of cathode materials such as LiCoO$_2$ and LiMn$_2$O$_4$ involves high temperature treatment, which is hard to retain the nanostructures after heat treatment. Moreover, the flexible substrate such as carbon cloth is not stable at temperature above 400 °C in the air, which makes the fabrication of flexible cathode a great challenge. As lithium source in lithium-ion batteries, cathode plays a pivotal role in determining the electrochemical performance of microbatteries and flexible lithium-ion batteries. Therefore, fabrication of high quality 3D self-supported cathode nanoarchitectures will be the key to accomplish the construction of 3D microbatteries and flexible lithium-ion batteries and further boost their energy density and power density.

LiMn$_2$O$_4$ is one of the most attractive cathode materials for lithium-ion batteries owning to its low cost, environmentally friendliness, high electrochemical performance, and simple synthesis. Various LiMn$_2$O$_4$ nanostructures, including nanowires [26], nanotubes [27], and nanoparticles [28], have been reported, showing improved electrochemical performances compared to bulk LiMn$_2$O$_4$
powders. However, these LiMn$_2$O$_4$ nanostructures are not applicable to microbatteries or flexible lithium-ion batteries without the support of conductive substrates and self-standing feature. By far, there are only a couple of trials that have been reported to fabricate 3D self-supported LiMn$_2$O$_4$ nanoarchitectures. Early works by Park and Bettge reported the fabrication of 3D porous LiMn$_2$O$_4$ thin films [29] and textured LiMn$_2$O$_4$ thin films [30] by using templates and magnetron sputtering technique, however the obtained 3D LiMn$_2$O$_4$ thin films showed low specific capacitance per area due to the low mass loading, without mentioning the high fabrication cost and tedious fabrication procedure. Shen et al. prepared carbon fiber loaded LiMn$_2$O$_4$ nanoparticles for flexible batteries by adopting a conversion from MnO$_2$ to LiMn$_2$O$_4$, but could not control the morphology change during the conversion [32]. The original morphology of MnO$_2$ cannot be retained after the conversion, which is probably due to the significant structural difference between MnO$_2$ and LiMn$_2$O$_4$. Therefore, a facile and scalable fabrication strategy is imperative to prepare the 3D self-supported LiMn$_2$O$_4$ nanoarchitectures to apply in 3D microbatteries and flexible lithium-ion batteries. In this work, we developed a novel one-step “hydrothermal lithiation” method to prepare 3D porous LiMn$_2$O$_4$ nanowall arrays on both metal and carbon substrates at low temperature. The self-standing LiMn$_2$O$_4$ nanostructures were constructed by using Mn$_3$O$_4$ nanostructure as the template with a tender spinel-to-spinel conversion route from Mn$_3$O$_4$ to LiMn$_2$O$_4$. The 3D porous LiMn$_2$O$_4$ nanowall arrays exhibited large reversible specific capacity as well as outstanding cycling stability and rate capability, making them promising as cathodes for 3D microbatteries and flexible lithium-ion batteries. For demonstration purpose, a flexible lithium-ion full cell in pouch format, coupling the LiMn$_2$O$_4$ nanowall arrays as cathode and the Li$_4$Ti$_5$O$_12$ nanowall arrays as anode, was successfully fabricated, delivering promising electrochemical performance. To the best
of our knowledge, this work will be the first report introducing the fabrication of vertically aligned LiMn$_2$O$_4$ nanowall arrays on various substrates by a solution method at low temperature.

2. Experimental section

2.1 Preparation of 3D self-supported LiMn$_2$O$_4$ nanowall arrays

The 3D self-supported porous LiMn$_2$O$_4$ nanowall arrays were fabricated using a one-step hydrothermal treatment to achieve the chemical lithiation to the porous Mn$_3$O$_4$ nanowall arrays and the synthesis procedure is illustrated in Figure 1a. The porous Mn$_3$O$_4$ nanowall arrays were deposited on the Au (or carbon cloth) substrates by cathodic deposition according to our previous work [31]. For the cathodic deposition, a three-electrode electrochemical cell was used with a solution of 0.015 M manganese acetate (99%, Aldrich) and 0.015 M sodium sulfate (99%, Aldrich) as the electrolyte. The electrochemical cell consists of a Au foil (1cm2, or carbon cloth, about 4 cm2) as the working electrode, a platinum foil (about 4 cm2) as the counter electrode, and a Ag/AgCl (in saturated KCl) as the reference electrode. The cathodic depositions were carried out on both Au and carbon cloth substrates at a constant potential of -1.4 V vs. Ag/AgCl for 900 s. After deposition, the Au (or carbon cloth) supported Mn(OH)$_2$ was cleaned with distilled water and dried in the air at room temperature overnight to convert into Mn$_3$O$_4$. The Au substrate supported Mn$_3$O$_4$ nanowall arrays were immersed into a 15 mL 0.02 M LiOH solution, which was then transferred into a 50 mL Teflon-lined stainless steel autoclave and heated at three different temperatures (200, 220, and 240°C) for 17 h. After cooling down to room temperature, the obtained LiMn$_2$O$_4$ nanowall arrays were rinsed with distilled water and dried in oven at 100°C in the air for further characterization. To construct the full cell device, Li$_4$Ti$_5$O$_{12}$ nanowall arrays
were grown on the carbon cloth by a similar hydrothermal synthesis according to the literature [32].

2.2 Materials Characterization

The crystallographic information and phase purity of the samples were characterized by X-ray powder diffraction (XRD, Bruker-AXS D8 Advance), Raman spectroscopy (Jobin-Yvon T6400 Micro-Raman system), and X-ray photoelectron spectroscopy (Phi Quantera SXM spectrometer using Al Kα X-ray as the excitation source). The morphology and microstructure of the samples were investigated by field emission scanning electron microscopy (FESEM, Hitachi S4300), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM, FEI Tecnai 20).

2.3 Electrochemical Measurements

The Au or carbon cloth substrates supported LiMn$_2$O$_4$ nanowall arrays without any binders or conductive additives were directly used as the cathodes. Half cells using lithium foils as both counter and reference electrodes were assembled with Swagelok cells in the glove box for electrochemical measurement. For all electrochemical measurements, 1M LiPF$_6$ in ethylene carbonate and diethyl carbonate (v/v = 1:1) solution was used as the electrolyte and Celgard 2400 was used as the separator. Cyclic voltammetry (CV) measurements were carried out in the voltage range between 3 and 4.4 V (vs. Li/Li$^+$) at various scan rates from 0.1 to 10 mV s$^{-1}$ using CHI660D electrochemical workstation. Galvanostatic charge/discharge measurements were carried out in the voltage range between 3 and 4.4 V at different C rates (1 C = 148 mAh g$^{-1}$) using LAND
CT2001A battery tester. To construct the flexible lithium-ion full cell, the carbon cloth substrate supported \(\text{Li}_4\text{Ti}_5\text{O}_{12} \) nanowall arrays were used as the anode to couple with the \(\text{LiMn}_2\text{O}_4 \) cathode and sealed inside an Al/polyethylene film. The mass ratio of \(\text{LiMn}_2\text{O}_4/\text{Li}_4\text{Ti}_5\text{O}_{12} \) was set to be 0.86 for the full cell to attain matched capacities for cathode and anode. The full cell was charged and discharged between 1.6 and 3 V at different C rates (1 C = 148 mAh g\(^{-1}\)). The calculation of the specific capacities for both half cells and full cells were based on the mass of \(\text{LiMn}_2\text{O}_4 \). The mass loadings of active materials on different substrates were measured by a Sartorius Analytical balance (CPA225D, with a resolution of 10 μg) and were estimated in the range between 1 and 2 mg cm\(^{-2}\). For the carbon cloth supported \(\text{LiMn}_2\text{O}_4 \) nanowall arrays, the mass ratio between the active material (~ 2 mg cm\(^{-2}\)) and the carbon cloth (~ 10 mg cm\(^{-2}\)) is about 1:5. The active material loading of the present work (1–2 mg cm\(^{-2}\)) is comparable to that of literature reports on loading active material on the carbon textile for flexible lithium-ion batteries [11,17].

3. Results and discussion

As high-temperature treatment is usually detrimental to fabrication of nanostructures for cathode materials, we developed a low-temperature “hydrothermal lithiation” method to fabricate 3D porous \(\text{LiMn}_2\text{O}_4 \) nanowall arrays on different conductive substrates. As illustrated in Figure 1a, the “hydrothermal lithiation” can enable the chemical lithiation to the preformed \(\text{Mn}_3\text{O}_4 \) nanowall arrays and convert them to \(\text{LiMn}_2\text{O}_4 \) nanowall arrays without altering the 3D nanoarchitecture. The 3D porous \(\text{Mn}_3\text{O}_4 \) nanowall arrays were prepared by a cathodic deposition method utilizing \(\text{H}_2 \) bubbles as the template. As the reduction potential of \(\text{Mn}^{3+} \) to \(\text{Mn} \) \((E^0 = -1.180 \text{ V vs. normal hydrogen electrode (NHE) at 25°C}) \) is much more negative than that of water electrolysis \((E^0 = \ldots) \),
-0.828 V vs. NHE at 25°C), the H₂ evolution is preferred to occur at the working electrode when applying a negative potential of -1.4 V vs. Ag/AgCl [33]. At the same time, the water electrolysis generates a high OH⁻ concentration near the cathode, which enables Mn(OH)₂ precipitation at the working electrode. In the cathodic deposition process, the H₂ bubbles which were formed continuously at the working electrode function as dynamic template, forming the 3D porous nanoarchitecture for Mn(OH)₂. Since Mn(OH)₂ is not stable in the presence of oxygen, it is readily oxidized to Mn₃O₄ after drying in the air, while remaining the same morphology. In the final stage, the “hydrothermal lithiation” can insert lithium into Mn₃O₄ effectively to develop LiMn₂O₄ without changing the morphology, providing a facile method to fabricate 3D nanoarchitectures for the LiMn₂O₄ cathode materials. From the optical images of the different films on Au substrates (Supporting Information, Figure S1), it is clear to see the color change from transparent to yellow and from yellow to black, corresponding to the phase transitions from Mn(OH)₂ to Mn₃O₄ and Mn₃O₄ to LiMn₂O₄.

Figure 1b-1i show the surface morphologies of the as-prepared Mn₃O₄ nanowall arrays and the LiMn₂O₄ nanowall arrays synthesized at three different hydrothermal temperatures of 200, 220, and 240 °C on the Au substrates. As shown in Figure 1b and 1c, the Mn₃O₄ film prepared by cathodic deposition is composed of nearly vertically aligned 2D nanowalls of about 2 μm in lateral length with similar size micropores in between. The enlarged FESEM image in Figure 1c demonstrates that every nanowall is composed of interconnected nanocrystallines. The formation of the macroporous nanowall arrays can be understood by the cathodic deposition process. During the cathodic deposition, water electrolysis generates H₂ bubbles at the cathode surface and increases the OH⁻ concentration in the vicinity of cathode surface. The continuous generation of
H₂ bubbles at the cathode surface functions as dynamic template, which prevents uniform precipitation on the substrate [34]. The precipitation can only take place at the free space between H₂ bubbles, thus forming the hierarchical nanowall arrays by continuously stacking the nanoparticles. After the “hydrothermal lithiation,” the morphology of the macroporous nanowall arrays was well preserved and was not influenced by the hydrothermal temperature. As the hydrothermal temperature increases, the nanowall thickness increases with larger particle size, indicating the lithiation to the Mn₃O₄ nanowalls and grain growth at higher temperatures.

As illustrated in Figure 2a, the tetrahedral Mn₃O₄ (hausmannite, space group I₄₁/amd), which can be expressed as Mn²⁺(Mn³⁺)₂O₄, is a normal spinel with Mn²⁺ and Mn³⁺ ions occupying the tetrahedral and octahedral sites, respectively. Similar to Mn₃O₄, LiMn₂O₄ also adopts a spinel structure (space group Fd-3m) but with Li⁺ staying in the tetrahedral sites and all Mn³⁺/Mn⁴⁺ staying in the octahedral sites. During the “hydrothermal lithiation,” Mn₃O₄ could react with LiOH and dissolved O₂ in the solution to form LiMn₂O₄ phase according to the following reaction:

\[8\text{Mn}_3\text{O}_4 + 12\text{LiOH} + 5\text{O}_2 \rightarrow 12\text{LiMn}_2\text{O}_4 + 6\text{H}_2\text{O} \quad (1) \]

When Mn²⁺ is oxidized to higher oxidation states, the Mn³⁺ or Mn⁴⁺ may not be stable in the tetrahedral sites and move to octahedral sites, leaving the tetrahedral sites occupied by the inserted Li⁺. The possible conversion mechanism from Mn₃O₄ to LiMn₂O₄ during “hydrothermal lithiation” is illustrated in Figure S2 (Supporting Information). The phase evolution was investigated by XRD and Raman Spectroscopy. Figure 2b shows the XRD patterns of the pristine Mn₃O₄ nanowall arrays and LiMn₂O₄ nanowall arrays at three different hydrothermal temperatures of 200, 220, and 240 °C on the Au substrates. Besides the diffraction peaks from the Au substrate, all other
diffraction peaks can be indexed to the tetrahedral hausmannite Mn$_3$O$_4$ (JCPDS No. 24-0734). After hydrothermal treatment at 200 °C, most diffraction peaks of Mn$_3$O$_4$ disappeared, while a new peak emerged as a shoulder to the (101) peak of Mn$_3$O$_4$, indicating the existence of two phases in the sample. The new peak can be attributed to the (111) reflection of the spinel LiMn$_2$O$_4$ (JCPDS No. 35-0782), revealing that certain portion of Mn$_3$O$_4$ was converted to LiMn$_2$O$_4$. When the hydrothermal temperature was increased to 220 °C, no more diffraction peaks from Mn$_3$O$_4$ was observed, suggesting the conversion was completed. When the temperature was further increased to 240 °C, the (111) peak for the LiMn$_2$O$_4$ became very sharp, indicating the successful fabrication of the LiMn$_2$O$_4$ nanowall arrays with a high degree of crystallinity. According to the (111) peak position of the 240°C synthesized sample, the c-lattice constant of the 3D LiMn$_2$O$_4$ nanowall arrays is calculated to be 8.239 Å, which is slightly smaller than the value of stoichiometric LiMn$_2$O$_4$ (8.248 Å, JCPDS no. 35-0782) reported in literature [40], showing Li excess in the hydrothermally prepared spinel samples. As 240°C is the temperature limit for our hydrothermal system, further increasing the temperature could cause safety issues. The structural evolution of the samples synthesized at 240 °C with various synthesis times from 1 to 24 h was characterized by XRD (Supporting Information, Figure S3). All XRD patterns of the LiMn$_2$O$_4$ nanowall arrays show no diffraction peaks from Mn$_3$O$_4$, suggesting the conversion from Mn$_3$O$_4$ to LiMn$_2$O$_4$ is fast and complete. The intensity of diffraction peaks from LiMn$_2$O$_4$ builds up as the synthesis time lasts up to 17 h, indicating the degree of crystallinity of LiMn$_2$O$_4$ can be improved with longer synthesis time. After 17 h, further increasing the synthesis time is not necessary as the XRD pattern of 24 h is similar to that of 17 h, implying 17 h synthesis time is enough to achieve a high degree of crystallinity for the sample. Raman measurements were further carried out to provide
complementary structural information to diffraction. Figure 2c shows the Raman spectra of the pristine Mn₃O₄ nanowall arrays and the LiMn₂O₄ nanowall arrays at three different hydrothermal temperatures of 200, 220, and 240 °C on the Au substrates. The Raman spectrum of the Mn₃O₄ nanowall arrays shows a strong peak at 660 cm⁻¹, which is the characteristic peak for Mn₃O₄ spinel, corresponding to the Mn-O breathing vibration of Mn²⁺ ions in tetrahedral coordination (A₁g mode) [35,36]. Other small peaks at 290, 322, and 372 cm⁻¹ can be attributed to the T₂g(1), E₉, and T₂g(2) modes of Mn₃O₄, respectively. After hydrothermal treatment, it can be seen that the A₁g peak shifted to lower energies with increasing hydrothermal temperature. As discussed by Julien et al. [37], the A₁g mode correlated with Mn-O vibration of MnO₆ groups will shift to lower energies as the average Mn oxidation state increases. Moreover, the peak energy decreases with the decrease of trigonal distortion represented by the c/a ratio from 1.64 of Mn₃O₄ to 1.00 of LiMn₂O₄.

For the 240 °C prepared sample, the Raman spectrum shows the A₁g mode at 630 cm⁻¹, agreeing well with literature report for the LiMn₂O₄ spinel [38]. XPS core-level spectra of Mn 2p and Mn 3p of the Mn₃O₄ nanowall arrays before and after lithiation clearly display the emergence of Li signal and oxidation of Mn to higher oxidation states after lithiation (Supporting Information, Figure S4), further validating the phase transition from Mn₃O₄ to LiMn₂O₄ during “hydrothermal lithiation”.

The above morphology and structural characterization indicates the 3D self-standing LiMn₂O₄ nanowall arrays can be successfully prepared by the “hydrothermal lithiation” method. To validate this approach is applicable to different substrates, carbon cloth was used as the substrate to prepare the 3D LiMn₂O₄ cathode, which could be used in flexible batteries. The XRD results show similar phase transition from Mn₃O₄ to LiMn₂O₄ on the carbon cloth substrate.
Figure 3a shows a low-magnification FESEM image of the prepared LiMn$_2$O$_4$ nanowall arrays grown on the carbon cloth, demonstrating a uniform coating on the ordered woven structure. Figure 3b and 3c illustrate the FESEM images of the Mn$_3$O$_4$ and LiMn$_2$O$_4$ nanowall arrays grown on the single carbon fiber, respectively, exhibiting a core-shell structure. The enlarged FESEM images in Figure 3d and 3e show the porous shell on the carbon fiber is composed of cross-linked nanowalls of 20 to 50 nm in thickness, which is similar to the film morphology on the Au substrate. Figure 3f and 3g display the TEM images of one Mn$_3$O$_4$ nanowall with low and high magnifications, respectively, presenting a mesoporous structure. The nanowall is composed of numerous interconnected nanocrystallines of 10 to 40 nm in size. The HRTEM image of a single Mn$_3$O$_4$ particle (Figure 3h) shows well-defined lattice fringes with an interplanar spacing of 4.9 nm, corresponding to the (101) planes of the tetrahedral Mn$_3$O$_4$. The SEAD pattern obtained from the mesoporous nanowall (Inset in Figure 3h) indicates a polycrystalline structure, and all diffraction rings can be well indexed to the Mn$_3$O$_4$ spinel. The dark nanowall image in Figure 3i displays a larger nanowall thickness for LiMn$_2$O$_4$, implying the volume expansion from Mn$_3$O$_4$ to LiMn$_2$O$_4$. Along with increased wall thickness, the particle size also increased in the range between 40 and 80 nm after the “hydrothermal lithiation,” agreeing well with the FESEM results. The HRTEM image of a single LiMn$_2$O$_4$ particle (Figure 3k) proves well-defined lattice fringes with an interplanar spacing of 4.8 nm, corresponding to the (111) planes of the cubic LiMn$_2$O$_4$. The SEAD pattern (Inset in Figure 3k) and HRTEM further confirm the formation of highly crystalline LiMn$_2$O$_4$ nanowalls by the low-temperature synthesis. TEM images of the 200, 220, and 240°C synthesized samples are compared in Figure S6 (Supporting Information), demonstrating the crystal growth and improvement in crystallinity at high synthesis
temperatures. MnO$_2$ nanowall arrays were also used in similar hydrothermal condition to produce LiMn$_2$O$_4$ by Liu et al. [39]. However, the nanowall morphology cannot be retained after lithiation and the nanowall becomes large particles pile up on the substrate. It is speculated that both the initial microstructure and crystal structure of manganese oxide are critical to the final morphology of LiMn$_2$O$_4$ after lithiation. In the present work, the Mn$_3$O$_4$ nanowalls possess a mesoporous structure, which not only facilitates lithiation over larger surface area but also provides improved structural stability during the phase transition. The numerous pores in the nanowalls can accommodate larger volume change or stain during the lithiation, thus retaining the primary nanowall morphology. Moreover, due to the structural similarity between Mn$_3$O$_4$ and LiMn$_2$O$_4$, the phase transition may proceed more smoothly with less morphological change compared to the phase transition from MnO$_2$ to LiMn$_2$O$_4$.

To investigate the electrochemical performance of the 3D LiMn$_2$O$_4$ electrode, half cells were first assembled using lithium anode and liquid electrolyte. Figure 4a shows the first charge/discharge curves of the 3D LiMn$_2$O$_4$ cathodes prepared at different temperatures of 200, 220, and 240 °C (denoted as S1, S2, and S3) at 1 C rate. Sample S1 shows sloppy charge/discharge profile without obvious voltage plateaus, indicating low degree of crystallinity of LiMn$_2$O$_4$ synthesized at 200 °C. The initial discharge capacity of sample S1 is only about 100.6 mAh g$^{-1}$, which can be explained by its poor crystallization and existence of Mn$_3$O$_4$ impurity phase due to incomplete conversion as shown in XRD. As the synthesis temperature was increased to 220 °C, the charge/discharge curves demonstrate better defined voltage plateaus with a larger discharge capacity of about 120.2 mAh g$^{-1}$, attributing to its high phase purity and improved crystallization. Sample S3 prepared at 240 °C shows the highest discharge capacity of about 131.8
m Ah g\(^{-1}\) with well-defined voltage plateaus, implying high degree of crystallinity and high electrochemical activity. The typical CV curves of the three samples at a scan rate of 0.1 mV s\(^{-1}\) between 3 and 4.4 V are compared in Figure 4b. Agreeing well with the charge/discharge results, sample S3 with high degree of crystallinity displays two pairs of well-defined redox peaks between 3.9 and 4.2 V, which can be attributed to two phase transformations of LiMn\(_2\)O\(_4\)/Li\(_{0.5}\)Mn\(_2\)O\(_4\) and Li\(_{0.5}\)Mn\(_2\)O\(_4\)/MnO\(_2\) [40]. The redox peaks become weak and broad for the samples synthesized at lower temperatures, indicating low degree of crystallinity without an ideal spinel structure. In addition, the S3 sample shows the smallest potential difference between cathodic and anodic peaks, suggesting small polarization and low resistance of the electrode with high electrochemical activity. Figure 4c shows the CV curves of the S3 sample at various scan rates from 0.1 to 10 mV s\(^{-1}\). Even at the high scan rate of 10 mV s\(^{-1}\), the CV curve of the S3 sample still retains well-defined redox peaks with only slight distortion, illustrating fast Li intercalation/deintercalation process and good rate capability. To compare the rate performance of each sample, the different electrodes were charged and discharged at different C rates and the specific capacities as a function of cycle number are shown in Figure 4d. The S3 sample demonstrates much larger reversible capacities at different C rates compared to S1 and S2, exhibiting superior rate performance. The discharge capacities of the S3 sample are 131.8, 120.9, 110.4, and 97.1 m Ah g\(^{-1}\) at 1 C, 5 C, 10 C, and 20 C, respectively, which outperform the rate performance of LiCoO\(_2\)/Al nanorod arrays [41], LiCoO\(_2\) nanowire arrays [25], LiMn\(_2\)O\(_4\)/TiN/SiO\(_2\) nanowire arrays [30], and C/LiFePO\(_4\)/Ti/Ni nanowire arrays [42]. The outstanding rate performance of the present LiMn\(_2\)O\(_4\) nanowall arrays can be attributed to their small particle size, high level of crystallization, and porous structure, which facilitate fast Li\(^+\) ion transport in the
Besides the specific capacity and rate performance, the cycling performance of the electrode is also important for practical application of flexible lithium-ion batteries. Figure 4e portrays the cycle performance of S1, S2, and S3 cycled at 1 C rate for 200 cycles at room temperature. The S3 sample shows the best cycling stability with 96% capacity retention after 200 cycles, which is much better than those of S1 (90%) and S2 (94%). The capacity fading of spinel LiMn$_2$O$_4$ is mainly attributed to structure degradation by volume variation during Li intercalation/deintercalation and Mn dissolution in the electrolyte. The samples with lower degree of crystallinity have a defective spinel structure with poor structural stability, which could accelerate structural degradation during cycling, thus leading to early capacity fading. The S3 sample, possessing well-defined spinel structure with high degree of crystallinity and mesoporous structure with small particle size, could well accommodate the volume changes and retain the structural integrity during repeated charging and discharging. More importantly, the 3D LiMn$_2$O$_4$ nanowall arrays (S3) exhibit a large areal capacity up to 0.29 mAh cm$^{-2}$, which is about 10 times larger than those of 2D planar LiMn$_2$O$_4$ thin film electrodes [43], and much larger than those of previously reported 3D thin film cathodes (Supporting Information, Table S1) [30, 41, 42]. Previously reported textured LiMn$_2$O$_4$ film [29] and 3D LiMn$_2$O$_4$ thin film [30] can only reach a maximum areal capacity of 0.01–0.03 mAh cm$^{-2}$ due to the low active material loading (~0.15 mg) associated with their complicated synthesis procedures. The large areal capacity of the present LiMn$_2$O$_4$ nanowall arrays can be attributed to their large mass loading per area and 3D porous structure, which could effectively boost the energy density within a limited footprint area for microbatteries.

The cycle performance and rate performance between LiMn$_2$O$_4$ nanowall arrays and bulk
LiMn$_2$O$_4$ powders were further compared to highlight the advantages of the unique LiMn$_2$O$_4$ nanowall arrays. For bulk LiMn$_2$O$_4$ powders, we purchased the commercial products from Shenzhen Tianjiao Technology; the morphology and XRD results for the conventional LiMn$_2$O$_4$ powders are shown in Figure S7 and S8 in Supporting Information. Both electrodes were cycled between 3 and 4.4 V at 1 C rate for 200 cycles at room temperature. As shown in Figure S9 (Supporting Information), the LiMn$_2$O$_4$ nanowall arrays exhibit enhanced capacity retention (96%) compared to that of the bulk LiMn$_2$O$_4$ powders (94%). Importantly, the LiMn$_2$O$_4$ nanowall arrays can deliver much larger reversible capacity (~130 mAh g$^{-1}$) than that of the bulk LiMn$_2$O$_4$ powders (~110 mAh g$^{-1}$) at 1 C. The advantage of LiMn$_2$O$_4$ nanowall arrays was clearly proved by the rate performance comparison as shown in Figure S10 (Supporting Information). At 20C rate, the LiMn$_2$O$_4$ nanowall arrays can still deliver a large reversible capacity of about 97 mAh g$^{-1}$, which is much greater than 46 mAh g$^{-1}$ of bulk LiMn$_2$O$_4$ powders, demonstrating remarkably superior rate performance of the LiMn$_2$O$_4$ nanowall arrays. The outstanding electrochemical performance of the LiMn$_2$O$_4$ nanowall arrays can be attributed to their unique porous structure in following aspects: First, the high degree of crystallinity, small particle size, and mesoporous nanowall structure endow this electrode with greatly improved structural stability during cycling, thus leading to excellent cycling performance. Second, the porous structure and small particles’ size can expedite electrolyte penetration into the electrode and enable fast ion diffusion with much shortened diffusion length, resulting in high utilization of the active material and outstanding rate performance.

The capacity fading of LiMn$_2$O$_4$ is mainly attributed to structural degradation caused by volume change and Mn dissolution during Li intercalation/deintercalation. The LiMn$_2$O$_4$ nanowall
arrays possess mesoporous structure and small crystalline size, which could alleviate the stain associated with volume change and remain the structural integrity during repeated charge/discharge process, thus resulting in improved structural stability compared to conventional LiMn$_2$O$_4$ powders. When the testing temperature increases to 50 °C, it is clear that both LiMn$_2$O$_4$ nanowall arrays and conventional LiMn$_2$O$_4$ powders show deterioration in cycle performance, which is due to the aggravated Mn dissolution at elevated temperature (Figure S11, Supporting Information). Although the LiMn$_2$O$_4$ nanowall arrays should possess larger surface area compared to conventional LiMn$_2$O$_4$ powders, the cycle performance of the LiMn$_2$O$_4$ nanowall arrays is still superior to that of the conventional LiMn$_2$O$_4$ powders at elevated temperature, suggesting LiMn$_2$O$_4$ nanowall arrays might have stabilized surface that suppresses Mn dissolution in addition to the enhanced structural stability.

The 240°C prepared LiMn$_2$O$_4$ nanowall arrays exhibit promising electrochemical performance, suggesting its high potential application in 3D microbatteries and flexible lithium-ion batteries. In this work, the LiMn$_2$O$_4$ nanowall arrays grown on carbon cloth were used as the cathode for flexible lithium-ion batteries. To construct the full cell, Li$_4$Ti$_5$O$_{12}$ nanowall arrays grown on carbon cloth with similar morphology were used as the anode (Supporting Information, Figure S12). The XRD results indicate phase pure Li$_4$Ti$_5$O$_{12}$ was synthesized by the hydrothermal method (Supporting Information, Figure S13). Figure 4f exhibits the schematic illustration of the full cell device construction with LiMn$_2$O$_4$ cathode and Li$_4$Ti$_5$O$_{12}$ anode. Figure 4g shows the typical charge/discharge curves of the LiMn$_2$O$_4$/Li half cell, Li$_4$Ti$_5$O$_{12}$/Li half cell, and LiMn$_2$O$_4$/Li$_4$Ti$_5$O$_{12}$ full cell at 1 C. As expected from the operating voltages of LiMn$_2$O$_4$ (~4 V) and Li$_4$Ti$_5$O$_{12}$ (~1.5 V), this full cell combination produces a battery with an operating voltage
of about 2.5 V. The initial charge and discharge capacities of the full cell are 149.1 and 124.8 mAh g\(^{-1}\), respectively, between 1.6 and 3.0 V at 1 C rate. The reversible capacity of the full cell was measured to be 105.6 mAh g\(^{-1}\) after 100 cycles. Except for the initial dozens of cycles, the coulombic efficiency for the rest of cycles is close to 100%. In addition to the good cycle performance, the full cell exhibits excellent rate capability as shown in Figure 4h. Even at a high rate of 20 C, the full cell still can deliver a reversible capacity of about 92.1 mAh g\(^{-1}\), which is about 73% of the reversible capacity at 1 C (Supporting Information, Figure S14). The flexibility of the full cell device was further investigated by testing the charge/discharge behavior and cycling stability at various bending states (Supporting Information, Figure S15-17). It is demonstrated that the full cell device retains almost the same charge/discharge curves and constant charge/discharge capacities at various bending states and after repeated bending cycles, proving good flexibility of the full cell device. For demonstration purpose, the fully charged full cell device was used to light a 3 V, 10 mW light emitting diode (LED). The full cell can continuously power the LED under different bending states (Supporting Information, Figure S18), implying good flexibility and potential application in flexible electronics.

4. Conclusions

In summary, the development of 3D cathodes that consist of self-standing LiMn\(_2\)O\(_4\) nanowall arrays on various substrates is presented in this work. The “hydrothermal lithiation” can directly convert tetragonal spinel Mn\(_3\)O\(_4\) into cubic spinel LiMn\(_2\)O\(_4\) without destroying the base nanoarchitecture. The 3D LiMn\(_2\)O\(_4\) nanowall arrays, featuring mesoporous structure and highly crystallized nanoparticles, exhibit large specific capacity (131.8 mAh g\(^{-1}\) or 0.29 mAh cm\(^{-2}\)).
outstanding cycling stability (96% capacity retention after 200 cycles), and excellent rate capability (97.1 mAh g\(^{-1}\) at 20 C), which make them promising at cathodes for developing 3D microbatteries and flexible lithium-ion batteries. For the first time, a flexible battery using 3D LiMn\(_2\)O\(_4\) nanowall arrays on carbon cloth as cathode and 3D Li\(_4\)Ti\(_5\)O\(_12\) nanowall arrays on carbon cloth as anode has been demonstrated by powering LED. The 3D cathode design and the effective low-temperature synthesis route will lead to new opportunities to develop high-performance microbatteries and flexible lithium-ion batteries.

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51572129, U1407106), Natural Science Foundation of Jiangsu Province (No. BK20131349), QingLan Project of Jiangsu Province, A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Fundamental Research Funds for the Central Universities (No. 30915011204). J. K. S and Y. S. M acknowledge the seed funding from the Sustainable Power and Energy Center at UC San Diego.

References

[17]. M. S. Balogun, M. H. Yu, Y. C. Huang, C. Li, P. P. Fang, Y. Liu, X. H. Lu, Y. X. Tong, Nano

Figure captions

Figure 1 (a) Schematic illustration of fabrication procedure of the 3D porous LiMn$_2$O$_4$ nanowall arrays on Au substrate. FESEM images of the as-prepared Mn$_3$O$_4$ nanowall arrays (b,c), 200°C synthesized LiMn$_2$O$_4$ nanowall arrays (d,e), 220°C synthesized LiMn$_2$O$_4$ nanowall arrays (f,g), and 240°C synthesized LiMn$_2$O$_4$ nanowall arrays (h,i).

Figure 2 (a) Crystal structures of spinel Mn$_3$O$_4$ and spinel LiMn$_2$O$_4$. (b) XRD patterns of the Mn$_3$O$_4$ nanowall arrays and LiMn$_2$O$_4$ nanowall arrays synthesized at different temperatures on the Au substrates. (c) Raman spectra of the Mn$_3$O$_4$ nanowall arrays and LiMn$_2$O$_4$ nanowall arrays synthesized at different temperatures on the Au substrates.

Figure 3 (a) FESEM image of LiMn$_2$O$_4$ nanowall arrays grown on the carbon cloth. (b,c) FESEM images of Mn$_3$O$_4$ nanowall arrays grown on the single carbon fiber with different magnifications. (d,e) FESEM images of LiMn$_2$O$_4$ nanowall arrays grown on the single carbon fiber with different magnifications. TEM images of Mn$_3$O$_4$ nanowalls with different magnifications (f-h). TEM images of LiMn$_2$O$_4$ nanowalls with different magnifications (i-k). Inset in h is the SEAD pattern for Mn$_3$O$_4$ nanowalls. Inset in k is the SEAD pattern for LiMn$_2$O$_4$ nanowalls.

Figure 4 (a) The first charge/discharge curves of LiMn$_2$O$_4$ nanowall arrays synthesized at different temperatures. (b) Typical CV curves of LiMn$_2$O$_4$ nanowall arrays synthesized at different temperatures. (c) CV curves of LiMn$_2$O$_4$ nanowall arrays synthesized at 240°C at different scan rates. (d) Rate capabilities of LiMn$_2$O$_4$ nanowall arrays synthesized at different temperatures. (e) Cycle performance of LiMn$_2$O$_4$ nanowall arrays synthesized at different temperatures. (f) Schematic illustration of construction of flexible full cell device combining 3D LiMn$_2$O$_4$ cathode
and 3D $\text{Li}_4\text{Ti}_5\text{O}_{12}$ anode. (g) Charge/discharge curves of the LiMn$_2$O$_4$ cathode, the Li$_4$Ti$_5$O$_{12}$ anode, and the LiMn$_2$O$_4$/Li$_4$Ti$_5$O$_{12}$ full cell. (h) Charge/discharge curves of the LiMn$_2$O$_4$/Li$_4$Ti$_5$O$_{12}$ full cell at different C rates. (i) Optical image of the flexible full cell device lighting a LED.

Figure 1
Figure 2
Figure 3
Figure 4
Graphic abstract

Self-standing porous LiMn$_2$O$_4$ nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries

Research highlights

► Self-standing porous LiMn$_2$O$_4$ nanowall arrays are fabricated by a facile "hydrothermal lithiation" method.
► The 3D LiMn$_2$O$_4$ cathodes exhibit superior electrochemical performance.
► A flexible Li$_4$Ti$_5$O$_{12}$/LiMn$_2$O$_4$ full cell device is demonstrated with good flexibility.