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X-ray computed tomography (CT) is well known in the medi-
cal and scientific research communities as a non-destructive 
imaging technique in which contrast originates from the 

materials’ absorption coefficients1. The attenuated X-ray beam 
due to the sample interaction is collected, converted and recon-
structed with sophisticated algorithms to produce cross-sectional 
and three-dimensional (3D) images2–6. The resultant data provide 
valuable non-invasive information about a sample’s morphology 
and internal structure. In the medical field, CT has led to count-
less discoveries and treatments that have greatly impacted the 
health of populations7. In the past two decades, the impact of CT 
has expanded outside the medical field to general metrology8,9, and 
has considerably impacted the development of battery systems and 
other electrochemical devices2,10,11.

With CT technology rapidly improving, commercial lab-based 
systems are now able to achieve similar resolutions to those of high 
brilliance synchrotron beamlines. However, with the increasing 
resolutions and applications of CT in electrochemical fields, more 
complex datasets are being explored, which motivates the need 
for advanced analysis techniques to fully harness detailed insights 
about samples. This has led to the recent leveraging of artificial 
intelligence (AI) and machine learning (ML) to assist in the seg-
mentation and analysis of complex datasets, or to act as a bridge 
between experimental data and multiphysics and/or multiscale 
modelling12–14. As such, AI and ML have proved to be valuable tools 

to substantially reduce the time necessary to process large CT data-
sets while precisely labelling features of interest.

In this Review, we explore the larger outlook of X-ray CT in the 
battery field and discuss how AI and ML can impact data analy-
sis and computational modelling. In the first section, we discuss 
the key technological developments that have made X-ray CT an 
advanced tool suitable for battery characterization. In the second 
section, we outline the virtues and limitations of CT for a variety of 
battery chemistries as well as the key morphological parameters that 
can be extracted from the experiments. The third section covers the 
methods of the appropriate data analysis and filtering to extract 
these parameters and discusses the emerging uses of AI and ML 
in battery modelling. Finally, in the last section we explore the per-
spective of the future of X-ray CT, in which AI and ML can be used 
in combination with other techniques to fully characterize battery 
systems and develop multiphysics and multiscale predictive models.

Development of X-ray CT
X-ray CT was first used in 1971, when Sir Godfrey Hounsfield 
performed the first patient brain CT scan15–17. Since then, CT has 
evolved from a technique primarily used in the medical community 
to a tool widely used across multiple disciplines in the scientific and 
engineering world2,18. To track the development of CT, Fig. 1 show-
cases the year of publication versus the reported voxel size for works 
in the medical and electrochemical storage fields19–21. Here, a voxel 
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is a 3D representation of a 2D pixel and corresponds to the smallest 
cube of information obtained from a scan. The spatial resolution 
is often thought of as at least two to three times the voxel size, but 
can be larger due to blurring and imaging artefacts that impede the 
distinction of fine features.

In the early 1980s, CT started to gain traction outside the medical 
field in the broader scientific and industry community, and in 1982, 
the first microtomogram was taken of a freshwater snail with a 12 µm 
voxel size22,23. In 1983, Ford reported the first industry application of 
an in-house built microscale CT (micro-CT) system in which they 
distinguished features with a spatial resolution of 25 µm (refs. 18,24). 
In the same year, Grodzins and co-workers25–27 proposed the theo-
retical principles to utilize synchrotron-sourced radiation to provide 
enhanced contrast and resolution for CT, and in 1984, Thomson 
et al.28 reported the first synchrotron radiation X-ray tomographic 
microscopy (SRXTM) measurement. Meanwhile, through the late 
1980s to 1990s, developments in the biomedical community pro-
gressed laboratory-scale CT from a slow step-and-shoot approach7 to 
that of continuous gantry rotation7,29–32 with multidetector rows33,34, 
which drastically decreased the acquisition speed for larger areas.

CT deployment in electrochemical device characterization
CT systems used in metrology benefited greatly from the improve-
ments in speed and detection developed by medical CT. However, 

it was not until 2005 that a CT machine was dedicated to metrology 
and industrial applications were introduced8,35; the first microto-
mograms of a battery2,36 and fuel cell10,37 were reported in 2001 and 
2006, respectively. As shown in Fig. 1, numerous CT works in the 
electrochemical field began to emerge shortly after the commer-
cialization of this tool. In the early 2010s, the first tomograms of a 
Li-ion battery positive and negative electrodes were reported, which 
illustrated the capability to distinguish the active material (LiCoO2) 
from an inactive phase38,39. The first 3D discharge simulation based 
on tomography images quickly followed in 201240.

Further development allowed for novel and more creative studies 
to be performed: in 2013, Ebner et al. performed the first operando 
battery CT experiment to visualize and quantify the electrochemi-
cal and mechanical evolution of SnO particles in a Li-ion battery 
electrode2,41. In 2018, Loveridge et al. used X-ray CT to identify 
the failure mechanism in the Galaxy Note 7, which were recalled 
due to battery explosions42. The reconstructed tomograms in this 
work revealed defects in the positive tab welding area that resulted 
in electrical shorts, which led to a thermal runaway. This example 
illustrates the usefulness of CT and the incentive of the recent efforts 
towards multiscale imaging by the electrochemical community43. 
Finally, an increasing number of works are now leveraging AI and 
ML, for instance, to imitate in silico electrode tomograms similar to 
those in experimental CT12.
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Capabilities of lab-based and synchrotron sources
For research in materials science, both lab-based and synchrotron 
facilities have made great advancements over the past decade. In 
2014, Maire and Withers wrote a review44 on quantitative X-ray 
tomography in which they outlined how X-ray CT data were no 
longer only used for qualitative insights but also increasingly for 
the quantitative analysis of material properties. This transition from 
qualitative to quantitative has only accelerated since 2014, as imag-
ing capabilities facilitated greater spatial and temporal resolutions. 
Lab-based X-ray CT systems now routinely achieve resolutions of 
1 µm or less, with specialized systems able to achieve resolutions as 
low as tens of nanometres45. This multilength scale capability for 
lab-based systems allows for the ex situ imaging of structural prop-
erties from tens of nanometres to millimetres45,46.

Recently, laboratory CT systems enabled dual or tri-energy 
imaging via multiple quasi-monochromatic beam energies47. 
Software packages were developed to extract the best detail from 
images taken at the different energies. For example, images taken 
with lower energies may have an enhanced resolution and sharp-
ness for materials that consist of low-atomic-mass elements. This 
software framework can also be utilized for correlative workflows 
between different microscopy methods. The strengths of individ-
ual techniques are leveraged in combined datasets that provide a 
heighted resolution or larger sample sizes. The temporal resolution 
of laboratory sources has also shown tremendous progress over the 
past decade, but remains insufficient for many operando and in situ 
analyses of structural dynamics in the range of minutes to hours. 
This limitation in temporal resolution is largely due to the challenge 
of thermal management at the anode source in lab-based X-ray 
systems that limits the flux of X-rays. Some progress has recently 
been made to increase the flux of lab-based systems by improving 
heat dissipation, such as liquid metal jet anodes as demonstrated by 
Excillum AB or composite anodes with high thermal conductivity 
materials, such as diamond, as demonstrated by Sigray. Synchrotron 
sources avoid this challenge by not having metal targets, but instead 
use magnetic fields to change the momentum of electrons and pro-
duce X-rays as the electrons are accelerated around a polygonal 
‘ring’. Synchrotron sources are also rapidly evolving, with major 
synchrotrons, such as the National Synchrotron Light Source II, 
Advanced Photon Source and the European Synchrotron Radiation 
Facility having completed or planned upgrades for increased pho-
ton flux density and coherence for faster imaging and greater 
sensitivity48,49. For example, the European Synchrotron Radiation 
Facility’s Extremely Brilliant Source is expected to present 100 times 
its previous brilliance and coherence, and so facilitate new oppor-
tunities for high-energy and high-spatial and -temporal-resolution 
imaging50. Although an updated review of the temporal and spatial 
resolution capabilities of international synchrotrons is beyond the 
scope of this Review, synchrotron sources now achieve tomograms 

with voxel sizes of 20–50 nm in under 30 minutes51,52 and such times 
may not be limited by the flux available, but by other factors such 
limitations of scintillators, optics or detectors. It is also important 
to note that X-ray nanoscale CT (nano-CT) has different require-
ments to those of micro-CT. Although micro-CT systems generally 
involve X-rays that travel directly from the source through the sam-
ple to the detector (absorption CT), nano-CT techniques generally 
involve additional optics for focusing or phase contrast. Examples 
of the optics needed for nano-CT and phase contrast are explained 
in other publications53,54. Lab-based nano-CT systems can also 
achieve resolutions of around 50 nm, in particular the Zeiss Ultra 
810 and the Sigray TriLambda systems, which are leading this field. 
Although several public research facilities around the world house 
these lab-based systems, few specialize in battery research, notably 
groups at Carnegie Mellon University, University College London 
and the National Renewable Energy Laboratory. This evolution of 
both laboratory- and synchrotron-based capabilities has continued 
to present new opportunities to understand the highly dynamic 
behaviour of electrochemical energy devices. For consistency, in the 
following we refer to 3D tomographic data collected at synchrotron 
facilities by scanning transmission X-ray microscopy or by trans-
mission X-ray tomography as SRXTM51,52.

X-ray CT in the battery field
Although several tools are already routinely used to characterize 
the morphology of electrochemical devices or materials, X-ray CT 
presents considerable advantages that the other techniques do not 
possess. For instance, focused ion beam (FIB)–scanning electron 
microscopy (SEM), transmission electron microscopy (TEM) and 
secondary ion mass spectrometry all require a vacuum, which makes 
in situ and operando studies difficult if not impossible for most bat-
tery systems. Moreover, these 3D reconstruction techniques are 
destructive and require invasive sample preparation methods, and 
accurate segmentation of the reconstruction data can be particu-
larly challenging as material can be observed through the sample’s 
porosity, which makes it difficult to identify exactly the extent of the 
pores of the sample. In comparison, X-ray CT is non-destructive 
and does not require a vacuum for high-resolution imaging, so it 
is ideal to evaluate 3D morphological changes in situ or operando 
in practical battery systems. CT can also be used to distinguish and 
segment species based on the varying X-ray absorption, which thus 
allows for select materials to be studied dynamically. A comparison 
of the X-ray CT with common battery characterization techniques 
is given in Table 1.

Although X-ray CT has many benefits over other tomography 
techniques, the relatively limited resolution and lack of chemical 
information for most lab-scale CT systems make it challenging 
to study electrode interfaces, a crucial aspect of battery systems. 
Nevertheless, CT is still a relatively new tool for the electrochemical  

Table 1 | Common tomography techniques in materials science

Technique Resolution FOV Destructive or 
non-destructive

Vacuum level Information extracted

X-ray CT55,76–79,158 ~10 nm ~100 µm Non-destructive Not required Porosity, surface area, tortuosity, 
chemical composition

Cryogenic electron 
tomography159

~1 nm ~100 nm Destructive ~10–8 kPa 3D nanostructures

FIB160 ~10 nm ~10 µm Destructive ~10–6 kPa Porosity, surface area

Atom probe tomography161 ~1 Å ~100 nm Destructive ~10–11 kPa Atomic arrangements

NMR imaging162 ~1 mm ~10 cm Non-destructive Not required 3D tomography

Time-of-flight secondary ion 
mass spectrometry163

~10 nm ~10 µm Destructive ~10–8 kPa Chemical composition
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field, and as high-resolution nano-CT systems are increasingly 
developed and used, it will become a common battery character-
ization tool as high-resolution 3D imaging with a precise species 
segmentation is now possible.

Materials CT parameters. To understand the usefulness of CT 
in battery research, it is important to know the information and 
morphological parameters that it can provide. Reconstructed 
volumes can showcase large-scale device architecture, such as 
that by Yin et al., who demonstrated a uniform electrode contact 
when flexing a printed Zn–AgO battery55. However, apart from 
large-scale architecture, many morphological parameters can also 
be extracted, which provide powerful insights into the electrode 
structure and performance. These morphological parameters 
can come in a variety of types: surface area, volume, particle size 
distribution or porosity and pore networks; pore networks refer 
to networks of interconnected pores that can be quantified by 
observables, as described later in this section.

Surface area and volume information are commonly used in 
battery research to analyse electrodes and are the most intui-
tive to observe and quantify from reconstructed volumes. 
However, owing to the limited resolution of the traditionally used 
micro-CT systems, it is more common to approximate the surface 
area as quantification is limited to the scan resolution. Surface 
area measurements can evaluate electrode wettability, whereas 
volumetric analysis can determine the thickness variation and 
volume expansion during battery operation. In an initial oper-
ando battery CT study, Ebner et al. evaluated the volume expan-
sion of a SnO electrode as it was lithiated41. During reduction, the 
repeated measurements using SRXTM revealed a 250% volume  
expansion due to lithiation that was only partially recovered dur-
ing oxidation. The thickness and the spatial distribution of the 
solid–electrolyte interface was also quantified, which showed its 
increase with lithiation. CT volume extraction has also proved 
particularly useful for silicon anode batteries56–58 in the evalu-
ation of volume expansion during lithiation (up to 280% for 
Li15Si4) (ref. 59), which is one of the main limitations that hinders 
cycle lifetimes. In a 2019 study, in situ SRXTM was used to track 
the expansion and contraction dynamics of Si electrodes during 

electrochemical cycling59. The thickness variation and changes in 
the delaminated area were studied, and the microsized crack vol-
ume fraction was quantified to reveal the failure mechanism in 
non-maturated electrodes.

Particle analysis can also be performed using CT: through seg-
mentation (Box 1), particles can be separated and their individual 
volumes can be analysed to provide valuable information about 
their size and distribution. This type of analysis can be especially 
useful for in situ or operando studies, in which the morphological 
evolution of active material particles can be tracked and analysed 
dynamically. For instance, Gent et al. studied the heterogeneity of 
lithiation in secondary particles in causing accelerated capacity 
fade60. Additionally, Zernike phase contrast61 is a technique often 
used in nano-CT because it uses phase differences in the transmit-
ted X-ray signal to differentiate materials, and thus is employed to 
segment out the three phases (for example, active material, binder 
and pore) typically observed in Li-ion battery electrodes62,63. With 
a high spatial resolution of 50 nm, Komini Babu et al. character-
ized the particle contact area variation with additives to illustrate 
their influence on the electrode contact resistance62. This can be 
particularly valuable in quality assurance to study the influence of 
manufacturing and synthesis conditions on particle morphology. 
For instance, Heenan et al. showed how five-minute-long scans with 
a nano-CT system were sufficient to fully resolve cathode particles 
and directly quantify the variation in the particle’s asymmetry, sphe-
ricity and local surface roughness64. This study also quantified the 
internal voids within individual particles, which should be mini-
mized to maximize volumetric energy density.

Similarly, pores and void spaces in battery electrodes can be visu-
alized and quantified with CT. For instance, Frisco et al. performed 
the first investigation of the solid–electrolyte interface build up 
with nano-CT and quantitatively extracted the pore distributions in 
commercial Li-ion cells to reveal a collapse of the anode pore struc-
ture during cycling65. They showed a decrease of more than half the 
pore volume with cycling, and qualitatively demonstrated, using 3D 
tomograms, the solid–electrolyte interface build up, which results 
in an increased cell impedance65. Similarly, Su et al. used operando 
SRXTM to perform the first characterization of Li–O2 battery cath-
odes with 3D tomography and extracted the pore distribution using 

Box 1 | CT species segmentation and workflow

In battery electrodes, the three main phases typically ob-
served in an X-ray CT scan are the active material, binder and  
pores. A proper segmentation of these is mandatory to ensure  
the quality of the extracted battery-specific parameters (such as 
particle size, porosity and tortuosity). As the contrast in X-ray 
CT is dictated by the material’s X-ray absorption coefficient, the 
simplest segmentation method is thresholding, which differenti-
ates materials based on the numerical grey value distribution164,165. 
With global thresholding, the segmentation is performed on the 
grey-value histogram of an entire 3D dataset. As can be seen in 
Fig. 3c–e, filtering is a critical step, as it can reveal three distinct 
grey-value regions in a Li-ion cathode (corresponding to bind-
er, porosity and active material), which were indistinguishable  
before filtering.

Manual segmentation and global thresholding are, nevertheless, 
subject to human error and bias, and therefore a variety of 
automatic segmentation methods were developed164,165. In contrast 
to global thresholding, adaptive local segmentation methods 
account for neighbourhood statistics to separate the phases in an 
image. Among the multiple local segmentation methods, Bayesian 
Markov random field segmentation, watershed segmentation and 
converging active contours were shown to be the most efficient 

for multiclass segmentation, with trade-offs specific to each 
method and sample164. ML algorithms, such as the Trainable Weka 
Segmentation plugin for ImageJ166, are also employed to increase 
the reliability of segmentation. These algorithms utilize training 
sets to adaptively recognize phases with an improved accuracy 
and are increasingly employed in X-ray CT segmentation in the 
electrochemical community100,167.

Above all, the limiting factor in segmentation is data quality, 
and it is crucial to have a workflow in which the dataset is optimally 
acquired and properly filtered to adequately define phases. The 
workflow can be separated into three stages: (1) preprocessing 
(artefact removal, filtering and sharpening), (2) segmentation 
(global and local thresholding) and (3) postprocessing (denoising). 
Denoising algorithms are often used to prepare the dataset for 
structural analysis. As each stage is interconnected, filters should 
be chosen with the segmentation method in mind. Moreover, care 
must be taken as overfiltering can be an issue as well: the mean 
filter can introduce ‘unrealistic’ values, and filters such as erosion, 
dilation and delineation can skew multiclass data164,168. Therefore, 
knowledge of the various filters and segmentation methods is 
needed to ensure a proper extraction of the crucial morphological 
parameters.

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology


Review ArticleNature Nanotechnology

an interconnected pore model for the scanned Li2O2 electrode66.  
By using Zernike phase contrast, they were able to image and dis-
tinguish the void spaces from the lighter species, such as carbon and 
Li2O2 discharge products, and successfully extract nanosized pores 
on the order of 100 nm.

Once segmented, an interconnected pore network model can  
be extracted and utilized to study the mesostructure evolution 
during fabrication processes, such as calendering67. For instance, 
Torayev et al. introduced a 3D-resolved pore network model 
extracted from a CT image of a Li–O2 battery carbon electrode68. 
The extracted pore network consists of a family of spheres with dif-
ferent sizes connected by cylindrical throats and describes species 
transport through the electrode. Thanks to models such as this, 
researchers have shown that electrode samples that have the same 
average porosity and tortuosity factor but different pore intercon-
nections can result in differing discharge performances69,70.

Finally, CT can also allow us to measure the tortuosity or tortu-
osity factor (square of the tortuosity), which can quantify how tor-
tuous an electrode is by analysing the connection of pores within a 
structure. The tortuosity factor was first introduced by Epstein in 
198971, and can be defined for electrochemical systems by the poros-
ity multiplied by the ratio of bulk diffusion to the effective diffusion 
due to the tortuous path, as shown in equation (1):

k = τ
2
= ϵ

Dbulk
Deff

(1)

where k is the tortuosity factor, τ is the tortuosity, ε is the porosity, 
Deff is the effective diffusion coefficient and Dbulk a bulk diffusion 
coefficient71,72. Tortuosity in CT has gained considerable attention 
in the past decade12,73,74 and is especially impactful for understand-
ing the transport of electrolyte ions through battery electrodes.  
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For instance, Ebner et al. used SRXTM to study the tortuosity anisot-
ropy of three common Li-ion electrodes with varying porosities to 
represent various particles shapes (spherical, triaxial ellipsoidal and 
platelet)75. They showed that an increased geometric tortuosity fac-
tor in the plane perpendicular to the current collection can impact 
the achievable Li-ion battery power density and cycling perfor-
mance and predicted a factor of four improvement in the battery 
discharge rate with platelet-shaped particles in graphite electrodes75.

Experimental trends in battery X-ray CT. Since the first bat-
tery microtomogram in 20012,36, CT has developed into a versatile 
technique in which various CT system types offer different ben-
efits. Laboratory-scale micro-CT is the most common CT system 
used in metrology and battery research, due to its large field of 
view (FOV) (~130 cm2 in the x–z direction for large scans), ease 
of access and use, and relatively high spatial resolution of up to 
~500 nm (refs. 3,76,77). However, even with submicrometre reso-
lution, micro-CT systems fall short in studying nanoscale phe-
nomena. For this reason, battery researchers turned to SRXTM, 
with spatial resolutions reported in battery studies that reach as 
low as 50 nm (refs. 78,79). The main compromises are the beamline 
time cost, increased sample preparation complexity and limited  
FOV. To circumvent this, laboratory-scale nano-CT offers spatial 
resolutions of up to 50 nm (ref. 80), rivalling SRXTM without the 
necessity for high brilliance synchrotron radiation.

Figure 2a shows the trend in FOV, voxel size and scan dura-
tion for CT experiments in battery literature81–94. As many CT 
studies do not report the spatial resolution, the FOV was plotted 
versus the voxel size, as the voxel size scales with and is typically 
slightly less than half the spatial resolution. As shown, regardless 
of the battery chemistry, there is a general trend in which the FOV 
decreases with smaller voxel sizes and is dependent on the CT  

system used. Indeed, in the nanoregime, synchrotron and 
nano-CT dominate use, whereas in the microregime, micro-CT 
systems are implemented more often. Additionally, in the nanore-
gime, nano-CT experiments are mostly ex situ due to the long 
scan time, and synchrotron experiments are mainly in situ or 
operando, which illustrates the difficulty in performing dynamic 
experiments at a limited FOV and long scan times (Fig. 2b). 
However, operando experimentation with lab-scale nano-CT was 
demonstrated using a quasi-4D approach, in which slower 3D 
scans were intermittently recorded between extended high tem-
poral resolution radiography sequences95.

In the microregime, lab-scale micro-CT dominates, and in situ 
or operando experiments are quite common, as such experiments 
tend to elucidate degradation mechanisms and key phenomena in 
batteries94,96–99. For many experiments, microsized voxels are small 
enough to perform novel studies for a variety of battery systems. 
For instance, shown in the orange inset of Fig. 2a, microsized 
Li-metal dendrites can be resolved in all-solid-state batteries97. 
Although X-ray CT is not able to distinguish light elements (such 
as metallic Li) from porosity in a denser matrix (such as the solid 
electrolyte), a proper sample design makes this possible by lever-
aging another tool, such as X-ray diffraction. Microsized particles 
on the scale of 10–100 µm can be easily resolved with micro-CT, 
such as the case for the Li-ion cathode and the zinc anode in the 
green and red insets, respectively. Particle-scale analysis can be per-
formed for both chemistries (Fig. 3), and in situ studies are even 
possible, as is the case for the zinc anode100. Modelling can also be 
performed using the reconstructed scans as input. For instance, the 
blue inset of Fig. 2a shows a reconstructed porous Cu current col-
lector scanned by micro-CT and a model of the lithiation in the 
structure, in which the porosity and tortuosity can be optimized to 
maximize the cycle life101.
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The battery chemistry of interest also strongly influences the 
type of instrument used. For instance, as Li is a very light element 
that weakly interacts with X-rays, it is difficult to image and resolve 
when it is close to dense materials, such as solid electrolytes or cath-
odes using traditional micro-CT, which use higher X-ray energies 
of around 30–160 kV (refs. 3,76). For this reason, the Li-ion battery 
studies shown with the green symbols in the microregime of Fig. 2  
mainly focused on studying device structures or composite elec-
trodes rather than investigating lithium growth. For instance, Carter 
et al. (43 in Fig. 2) investigated the delamination in a lithium iron 
phosphate battery and the porosity and diffusion-based tortuosity 
factor of the graphite anode structure43. They were able to distin-
guish between graphite, void and copper, but did not specifically 
look at Li species. Many studies to investigate Li with CT use Zernike 
phase contrast with nano-CT or SRXTM systems, which can use 
lower X-ray energies of around 5–8 keV. However, there are still 
constraints on the FOV and sample preparation and size for these 
instruments, which is why Li-ion CT studies, such as Frisco et al.  
(65 in Fig. 2)65 and Ghorbani Kashkooli et al. (79 in Fig. 2)79, tend  
to be ex situ. However, operando nano-CT experimentation with 
larger form-factor coin cells has been demonstrated95, and custom  
in situ and/or operando cells can be developed to help study 
dynamic phenomena, as shown by Vanpeene et al. (59 in Fig. 2)59 
who used X-ray CT-compatible custom Swagelok cells to study  
volume expansion in situ using SRXTM with a 200 nm voxel size.

Progress and challenges in in situ and operando X-ray CT. From 
the onset of X-ray microtomography, it was recognized that sample 
preparation and the design of in situ environments would be an 
important challenge for decades to come102. Researchers frequently 
aim to achieve the maximum resolution and contrast for samples 
that are as large as possible to achieve good statistics and obtain rep-
resentative volume measurements. However, maximizing the con-
trast and signal-to-noise ratio for a given X-ray energy and specific 

composition requires limiting the sample to a specific width103. This 
is due to the attenuation of X-rays through the sample thickness, 
and that there is an optimal extent to which the sample of inter-
est interacts with the incoming beam. Many different materials are 
used within the current and next-generation Li-ion batteries, but for 
simplicity the example of the electrode material LiNi0.8Co0.1Mn0.1O2 
(NMC811) is discussed here—attenuation coefficients for other 
materials can be determined from open-source databases104. For 
an X-ray energy within the range of 3–8 keV (the typical range of 
lab-based nano-CT systems), the optimal thickness of a NMC811 
sample is between 10 µm and 100 µm (ref. 103). Synchrotron sources 
can tune the X-ray energies to be monochromatic within a wide 
range from single-digit kiloelectronvolt to energies that approach 
100 keV, and thus researchers can weigh the suitability of synchro-
trons and beamlines for their specific application. As most mono-
chromatic or quasi-monochromatic sources operate in the range of 
5–30 keV, the optimal width of an NMC811 electrode is between 10 
µm and 1,000 µm, which raises the challenge of designing a small 
enough Li-ion cell to achieve the relevant in situ or operando con-
ditions. For many quantitative measurements of electrode micro-
structural properties, it is critical to achieve a representative volume 
element105. Thereafter, building an environment that facilitates 
operando or in situ imaging is needed. Of most interest is an elec-
trochemical operation, but some work has focused on mechanical 
experiments, such as the in situ compression of electrodes to repli-
cate calendering106. Ideally, all environments would be cylindrical 
to achieve symmetry around the axis of rotation during imaging, 
which would involve circular disks of electrodes with diameters 
between 10 µm and 1,000 µm. Specialized laser milling was recently 
shown to achieve diameters down to 80 µm with little effect on the 
electrode microstructure106. With these conditions in mind, oper-
ando cell environments have evolved over the past decade107, but 
still suffer from design challenges that can jeopardize their per-
formance, reliability and operational relevance. Minimizing the 
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amount of material is not of interest to imaging, but is necessary 
for cell integrity and operation, such as the casing or current collec-
tors, and is challenging. Eliminating the risk of highly attenuating 
materials, such as current collectors blocking the FOV, is also chal-
lenging, but can sometimes be avoided by having more low attenua-
tion but functional materials in the FOV, such as thick Li electrodes 
or graphite inserts in cylindrical cells108. Common issues include: 
damaging beam exposure109, poor control of pressure applied on 
the cell, stagnant gas that causes poor ionic or electronic contact 
and exposure of cell materials to contaminants, which include 
air110. To minimize beam damage, reducing the total exposure as 
much as possible helps, but this can conflict with the objectives of 
the experiment by necessitating a reduced data collection. Another 
way to reduce beam damage for most materials within cells is to 
use high-energy beams that avoid the high photoelectric absorption 
around the K edge of atoms. High-energy beams tend to interact 
less with the sample, but are also more challenging to manipulate via 
the optics methods necessary for nano-CT and thus most nano-CT 
systems operate at energies below 12 keV. A discussion on beam 
damage to polymer fuel cells and the ways in which the European 
Synchrotron Radiation Facility enables higher energies to avoid 
such damage is provided by Kulkarni et al.111. The high impedance 
that is often associated with bespoke operando cell designs can 
limit their ability to achieve high-rate conditions, which necessi-
tates modifications of well-proved cell designs, such as coin cells112. 
Current state-of-the-art operando cell designs for high-resolution 
imaging are based on plastic union fittings with steel rod current 
collectors that seat electrodes around 1 mm in diameter57,113,114, but 
much opportunity remains to improve the reliability, rate perfor-
mance and ease of assembly. When a functional operational design 
that is suitable for the X-ray imaging conditions is achieved, further 

challenges await to minimize artefacts in reconstructions, system-
atic errors and data processing for quantitative analyses, such as 
those outlined in Boxes 1 and 2.

CT analysis, simulation and modelling
The knowledge and large quantity of information gained from 
X-ray CT data lead to promising outcomes in the computational 
modelling of batteries. The Newman’s model, a first-generation 
mathematical model of a Li-ion battery, was developed in 1993115,116. 
It describes ionic transport in the concentrated electrolyte, lithium 
transport in the active material and intercalation electrochemistry 
at the interface between the active material and electrolyte. This 
model is supported on a 2D Cartesian representation of the cell, 
with an extra polar coordinate dimension for the active material 
particles (generation I models (Fig. 4)) and is therefore also referred 
to as pseudo-2D. As this is a 2D approach, several input parameters 
are necessary to consider the geometrical features of the electrodes 
and the cell, such as the separator thicknesses, active material par-
ticle size, active surface area (surface area of contact between the 
active material and electrolyte), porosity and tortuosity factor of 
both electrodes. Although some of these morphological parameters 
(for example, tortuosity factor and active surface area) are challeng-
ing to evaluate using experimental techniques117, the stochastic gen-
eration of 3D electrode mesostructures based on the experimental 
parameters was shown to be a valuable method.

To stochastically generate an electrode mesostructure, several 
parameters are needed: electrode composition (active material/
carbon/binder volume ratio), particle radius distribution and 
porosity and thickness of the electrode. In essence, the active mate-
rial (typically as spheres) is generated randomly in the simulation 
box until the desired values are reached. Several observables, such 

Box 2 | Artefacts and filtering in CT

X-ray CT data analysis aims to obtain the truest depiction of the 
sample or structure analysed. However, experimental artefacts 
can distort the X-ray projections, which eventually leads to data 
misinterpretation. As such, data that contain artefacts can make 
segmentation challenging, and thus disallow the in-depth analy-
sis of complex structures such as electrodes. Image noise is one 
of the most common artefacts169, as well as cupping and streaks 
or dark bands from beam hardening164,170,171. As polychromatic 
X-rays are used in micro-CT, low-energy photons are dispropor-
tionately absorbed, and the average energy of the beam increases 
or hardens. This results in cupping, in which the beam is hard-
ened more through the middle of an object than at the outer edges, 
and so a uniformly dense material will appear non-uniform170,171. 
Streak artefacts or dark bands occur due to differences in material 
absorption (that is, heavy elements next to light elements), with 
the beam in one area of the scan hardened more than in another 
area171. This is especially problematic for Li-ion batteries, in which 
light elements, such as Li, may be near heavier elements, such as 
Cu. Beam-hardening effects can be partly mitigated experimen-
tally using physical filters that preharden the X-ray spectrum to 
remove low-energy photons170.

Other artefacts can originate from instrument issues or 
improper scan parameters. Low X-ray transmission through the 
sample (typically below 20%) can result in artefacts, such as image 
noise and streaking, and is a common issue for scanning materials 
with high X-ray absorption coefficients. This can be resolved by 
tailoring the energy and acquisition time (either through the 
exposure time or number of back projections) to allow for more of 
the transmitted signal to be collected by the detector. For instance, 
undersampling of the projections needed to reconstruct a sample 

can cause artefacts known as view and ray aliasing171, in which fine 
stripes appear to radiate from the edges of or close to structures. 
View aliasing originates from a too-large interval between 
projections and ray aliasing originates from undersampling within 
a given projection. In general, it is recommended to improve the 
data quality as much as possible by selecting the appropriate initial 
scan parameters through the image processing stage before image 
reconstruction.

Most artefact reduction occurs during post-processing after 
reconstruction, in which filtration algorithms can lessen or 
remove experimental artefacts and smart segmentation methods 
can be applied to separate out species for further analysis. 
Beam hardening can be treated numerically with a low-pass 
smoothing filter, whereby the smoothed image is used to detect 
large-scale intensity variations caused by beam hardening, or 
by a less error-prone iterative approach, which uses sequential 
histogram-based segmentation with a grey-value classification to 
lessen the effects of beam hardening164,172,173.

Image noise is commonly addressed with a multitude of 
filtering algorithms173. Neighbourhood statistical filters consider 
neighbouring voxels grey values and apply a kernel operation, in 
which voxels values are multiplied by a set of weights and then 
averaged over the sum of the weights to smooth or correct for 
noisy data173. Such filters are differentiated by the type of kernel 
used, namely, mean, median, mode, minimum, maximum and 
Gaussian filters. Although filters such as these tend to blur the 
original data, several strategies were developed to retain particles 
and pore edges, such as the non-local means and anisotropic 
diffusion filters164,173,174 and the unsharp mask filter used to improve 
image contrast173,175,176.
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as the amount of overlap between the spheres or the surface area, 
can be tuned to achieve the desired configuration. Then, the inac-
tive phase can be added by controlling its morphology, that is, as 
a film around the active phase or as clusters118,119. This approach 
allows access to larger electrode volumes than those experimen-
tally achievable with nano-CT. Some commercial and academic 
algorithms (for example, https://www.math2market.com) are 
reported for electrode generation120 and for porous media analysis 
to extract tortuosity factors121. An alternative to the extraction of 
the morphological parameters is the direct use of the generated 3D 
electrode mesostructures in electrochemical performance models. 
For this purpose, the inactive phase (carbon/binder) can either be 
merged with the active material as the solid phase (generation II 
models (Fig. 4))122–126 or be explicitly considered in the 3D model 
(generation III models (Fig. 4))73,118,127,128.

However, even full stochastic electrode mesostructure gener-
ation may not be sufficient to replace the real battery electrode 
texture. In that sense, tomography images were used in the recent 
years to increase the reliability of 3D battery cell computational 
models. Electrode mesostructures, reconstructed from micro-CT 
images, were used for this purpose by adding the inactive phase 
stochastically128–130. Extracting the carbon and binder additive 
domains from micro-CT data is, indeed, challenging due to a too 
coarse spatial resolution of over ~500 nm. The dataset therefore 
needs further work to add the binder and carbon to the active 
material region. The use of micro-CT images allows the models 
to account for realistic active material shapes and their impact 
on electrochemical performance40,131. For instance, micro-CT has 
been used in redox-flow battery modelling to capture a represen-
tative volume, which is usually much larger than that for Li-ion 
batteries132–134. In this context, it was used to predict the electrolyte 
impregnation and electrochemical response of a redox flow bat-
tery using three different electrode mesostructures that originate 
from micro-CT data135. However, this technique still has limita-
tions, namely its inability to resolve the spatial location of the inac-
tive phase in the case of Li-ion batteries. This ability is required to 
investigate the impact of the arrangement of the active and inactive 
phases on the electrochemical, transport and thermomechanical 
processes within the electrodes. For instance, the ionic transport 
through the electrolyte is especially impacted by the interconnec-
tivity of pores—to extract this requires the segmentation of the 
active and inactive phases68.

In nano-CT, the inactive phase can be distinguished from the 
active material and the porosity. The extracted structure can be 
directly used in the generation III models, without any additional 
steps. However, the high resolution comes at the cost of a narrower 
FOV, which results in a small volume of the imaged electrode. As 
a result, issues related to the representativeness of the volume have 
arisen and are addressed in the literature136,137. Additionally, such a 
multiphase structure can be challenging to import in a finite ele-
ment–volume method model, especially for numerous interfaces 
between a large number of phases.

In recent years, several tools have been reported to overcome 
this challenge120,138–140. In 2019, the first generation III battery cell 
electrochemical model, with a positive electrode extracted from 
nano-CT data, was reported with an effective porosity and tortuos-
ity for the inactive phase141. Furthermore, in state-of-the-art model-
ling, efforts have been made to limit as much as possible the use 
of average geometrical parameters. In 2020, several generation III 
model studies were reported, with resolved structures of the inactive 
phase and the ability to have no geometrical parameter as a model 
input73,142. This explicit representation of the structure is the key ele-
ment to capture heterogeneities in the cell. For instance, for the 3D 
modelling of all-solid-state batteries, locating the actual positions of 
voids in the electrode is of the utmost importance to understand the 
device limitations.

Lastly, a new strategy is to achieve representative generation III 
models without the need for tomography data: the simulation of the 
electrode manufacturing process67,125,143. By this method, the struc-
ture, from the slurry to the final calendered electrode, can be pre-
dicted with the inactive phase considered explicitly throughout the 
process144,145. With the help of experimental inputs (slurry viscosity, 
porosity of the calendered electrode and so on), these models are 
validated at each step. Despite using some geometrical approxima-
tions, such as spherical particles, this approach yields satisfactory 
results and links experimental data with modelling, and thus paves 
the way towards predictive digital twins of an entire manufactur-
ing processes and showcases its impact on battery performance 
predictions.

Future of battery X-ray CT
Correlative workflow characterization. Although X-ray CT is a 
powerful non-destructive imaging tool, it still suffers from several 
limitations, such as the inability to distinguish chemical species 
with similar X-ray absorption, or to provide nanoscale informa-
tion about the sample’s morphology. As such, one of the main 
strategies to overcome these shortcomings is to combine X-ray CT 
with other complementary imaging techniques through correlative 
imaging. Several studies have already shown that both low- and 
high-resolution X-ray CT scans can be used to determine a region of 
interest which is then milled using FIB–SEM. Subsequently, volume 
reconstruction can be performed, and the data can be aligned with 
the high-resolution CT scan. Moreover, FIB–SEM benefits from the 
multiple detectors, such as energy-dispersive X-ray spectroscopy, 
electron backscatter diffraction (EBSD), wavelength dispersive 
X-ray analysis, Raman spectroscopy and time-of-flight secondary 
ion mass spectrometry, which provide valuable insights by correlat-
ing chemical and morphological information. As already shown in 
the literature, a lamella of the region of interest can then be used for 
scanning transmission electron microscopy analysis, which provides 
nanoscale-resolution imaging, combined with crystallographic and 
spectroscopic information owing to electron energy loss spectros-
copy and electron diffraction. This method was successfully applied 
in 2014 by Burnett et al. to study the corrosion of stainless steel, as 
EBSD and energy-dispersive X-ray spectroscopy combined allows 
us to determine both element segregation and grain orientation146. 
Similarly, Slater et al. were able to combine micro-CT with nano-CT 
and scanning transmission electron microscopy/energy-dispersive 
X-ray spectroscopy by using plasma FIB milling, and gain insights 
into the influence of grain boundary orientation in cavity formation 
in Type 316 stainless steel147.

More recently, Apeleo Zubiri et al. demonstrated that coupling 
lab-scale nano-CT with electron tomography was an efficient way 
to combine the higher resolution of electron tomography with the 
wider FOV of nano-CT148. As such, the ML-assisted segmentation 
of the pores in zeolite particles from the CT data was improved con-
siderably by using the segmentation of the higher-resolution elec-
tron tomography data as a training dataset.

In the battery field, a few studies were successful at applying cor-
related tomography to electrode composites or separators12,52,149,150. 
The combination of high-contrast absorption X-ray tomography 
with ptychographic X-ray CT was shown to be able to provide a 
detailed microstructure of Si composite anodes, in which the Si 
particles were distinguished from graphite and the carbon-binder 
domain, and was even able to resolve the solid–electrolyte interface 
layer52. The obtained dataset was then used to model the state of the 
charge distribution of individual Si particles. On the cathode side, 
FIB cross-sections were used to help segment the nano-CT data of a 
LiNi0.33Mn0.33Co0.33O2 electrode, which allowed the porosity network 
and carbon-binder domain to be resolved149. This information was 
then successfully combined with a lower-resolution micro-CT scan 
to evaluate the tortuosity factor of the electrode. SEM cross-section 
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views were also combined with X-ray CT data of Li-ion battery 
separators to stochastically generate fibrils in the porous network. 
These fibrils, too small to be directly observed by micro-CT, were 
shown to have a significant influence on the prediction of the effec-
tive diffusion coefficient150.

Correlative tomography, by employing a low-to-high-resolution 
approach, is a flourishing technique that can provide the multiscale 
information needed for the future of battery materials research. 
Combined with tools such as stochastic generation and electro-
chemical modelling, deep insights into the underlying limitations of 
different battery systems can be gained. Nevertheless, some techni-
cal considerations still need to be addressed before this method can 
be widely applied to all types of system. Principally, when working 
with sensitive materials, all the steps of the analysis must be car-
ried out under a protective atmosphere, which necessitates a careful 
design of the samples and transfer devices. Moreover, although the 
possibility to investigate a region of interest with nanometre-scale 
resolution makes this method powerful, to reduce the size of the 
sample sufficiently for high-resolution tools (that is, nano-CT or 
even TEM) can still be a challenge, and tools with a higher milling 

throughput than that of FIB, such as plasma FIB, laser plasma FIB 
or broad ion beam milling, are often required.

Perspective of CT data analysis with AI and ML. It is evident that 
the future of CT data analysis is strongly correlated with the trans-
formative tools of the emerging digital era, which includes AI, ML 
and multiscale modelling. ML techniques (within the wider field of 
AI) present a plethora of opportunities to elucidate structure–func-
tion relationships for porous electrode images produced by CT and/
or multiphysics and/or multiscale modelling. In short, ML techniques 
give a computer the power to learn and self-correct from data to build 
‘models’ (also called ML models) in an automatic way. These mod-
els can then be used to predict qualitative or quantitative outcomes, 
which allows us, for instance, to unravel complex parameter interde-
pendencies in multidimensional datasets and to automatize processes 
that would be too time-consuming to perform manually. Regarding 
the latter, segmenting and distinctly labelling complex features in CT 
images, such as cracks13 or regions of delamination14, can be conducted 
more quickly and accurately with ML techniques. The same can be 
said for the segmentation of composites that contain multiple types of 
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materials, such as Li-ion battery electrodes, which encompass metal 
oxides, carbon particles and polymers. Such impressive segmentation 
capabilities allow electrochemically active and inactive materials, as 
well as pores, to be distinguished faster than ever before, triggering 
the emergence of the powerful digital twins of real electrode electro-
chemical operation. Still, the challenge remains for CT to distinguish 
polymeric binders from carbon additives, as both materials affect 
differently the overall electrode performance. ML is also expected to 
help accelerate the diagnostics of microstructural phenomena, as well 
as the identification of favourable particle and electrode architectures 
for a long life and for specific operating conditions.

Applying ML generative adversarial networks (GANs) to artifi-
cially create representative electrode microstructures12 holds prom-
ise for generating 3D-resolved images with greater detail than any 
single imaging mode could achieve. GANs, trained with CT vol-
umes or even slices151, can also be used to generate in silico extended 
volumes. This would be particularly suitable for developing repre-
sentative electrochemistry simulations from pre-existing tomogra-
phy data of composite or electrode structures. The combination of 
physical-based manufacturing models and GANs can also allow the 
quick generation of composite structures for compositions not yet 
characterized, which opens tremendous opportunities to acceler-
ate the prediction and optimization of the impact of manufacturing 
conditions on the structures119,152.

Critical to the acceleration of the adoption of ML techniques 
for these purposes is to make robust multiscale data open source, 
which would not only alleviate the limitation of accessing special-
ized imaging facilities but also provide a wealth of microstructural 
information available for ML and multiphysics and/or multiscale 
models. Such repositories should contain not only the actual data 
but also the metadata, which would allow us to precisely track the 
conditions in which the characterization was performed, and some 
initiatives have already emerged153.

We also expect the emergence of AI- and ML-orchestrated 
workflows that integrate CT characterization, data analysis and 
physical model generation at multiple scales (multiscale modelling)  
(Fig. 5)73. By coupling existing middleware technologies (for exam-
ple, UNICORE, https://www.unicore.eu) to AI and ML scripts, such 
workflows may not be difficult to develop. Thus, ML can be used 
to sequentially or iteratively couple different length-scale models 
automatically with varying degrees of fidelity154,155. Moreover, ML 
can also assist in comparing the modelling outcomes with exper-
imental data. The outputs can then later be used to train AI and 
ML models to predict the synthesis and manufacturing conditions 
needed to achieve the optimal material properties156. Such an auto-
mated high-fidelity approach may revolutionize the conception of 
new composite materials by linking experimental data (CT) with 
computational simulations.

Conclusions
Since its conception in the 1970s, CT has profoundly impacted 
the scientific community. In the past two decades, it has extended 
to greatly influence battery research and development. As a 
non-destructive tool, CT can perform powerful in situ and ope-
rando studies in a multitude of battery chemistries. The recon-
structed volume and extracted morphological parameters (for 
example, particle size distribution, porosity and tortuosity) can be 
incorporated in predictive models to simulate battery performances. 
Using AI and ML techniques, such as GANs, CT images can also be 
used to generate large representative volumes of multiphase porous 
electrode microstructures12. The advent of such techniques can 
drastically reduce the number of required CT characterizations for 
3D-resolved electrochemical models and also ensure representative 
volumes for simulations.

Additionally, the combination of multiscale 3D morphological 
characterization techniques (for example, FIB–SEM, TEM, micro-CT 

and nano-CT) may pave the way for performance-predictive mod-
els that can incorporate phenomena at multiple length scales. 
Characterization data and models can then be consolidated in 
open-source datasets and repositories, and even incorporated in 
virtual-reality environments and tools to educate a new generation 
of researchers on electrode structures and associated geometric fea-
tures157. With the tremendous progresses achieved in these past 20 
years in CT experimentation, analysis and computational model-
ling, and in AI and ML, there is the promise of remarkable achieve-
ments and discoveries in the years to come.
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